cPantothenamides inhibit blood-stage Plasmodium falciparum with potencies (50% inhibitory concentration [IC 50 ], ϳ20 nM) similar to that of chloroquine. They target processes dependent on pantothenate, a precursor of the essential metabolic cofactor coenzyme A. However, their antiplasmodial activity is reduced due to degradation by serum pantetheinase. Minor modification of the pantothenamide structure led to the identification of ␣-methyl-N-phenethyl-pantothenamide, a pantothenamide resistant to degradation, with excellent antiplasmodial activity (IC 50 , 52 ؎ 6 nM), target specificity, and low toxicity.O ne-half of the world's population (ϳ3.4 billion people) is at risk of contracting malaria, with pregnant women and children Ͻ5 years of age being especially vulnerable. In 2013, the WHO estimated that malaria caused ϳ584,000 deaths globally, with the majority occurring in Africa (1). Although efforts to control and to eliminate malaria in the past 15 years have saved an estimated 3.3 million lives (1), drug-resistant parasites continue to emerge (2). This places the progress in the fight against the disease under pressure, especially since there is no effective vaccine against malaria (3). Several new drug targets have been identified in recent years (4); however, these targets now need to be exploited through the development of directed treatments.We are interested in targeting the biosynthesis of the essential cofactor coenzyme A (CoA) from the water-soluble vitamin B 5 (pantothenate, compound 1 in Fig. 1) for antimalarial drug development (5, 6). It has been shown that extracellular pantothenate is essential for intracellular malaria parasites (7), which indicates that Plasmodium falciparum does not utilize exogenous CoA but must synthesize CoA de novo (8).Pantothenate analogues interfere with the ability of P. falciparum to utilize the vitamin, with many analogues being characterized as growth inhibitors of the blood-stage parasites (9-11). Furthermore, a recent study showed that CoA biosynthesis can be targeted by a chemically diverse set of inhibitors that do not resemble pantothenate, the most potent of which had a 50% inhibitory concentration (IC 50 ; the concentration that inhibits parasite proliferation by 50%) of 120 nM against blood-stage parasites (12). These studies support pantothenate utilization (and therefore CoA biosynthesis and CoA-dependent processes) as an antiplasmodial target.Recently we showed that N-substituted pantothenamides (PanAms), a specific class of pantothenate analogues, have excellent antiplasmodial activity. Among these, N-phenethyl-pantothenamide (N-PE-PanAm) (compound 2 in Fig. 1) exhibited an IC 50 of 20 nM (13); this potency is comparable to that of chloroquine (14, 15). In practice, however, the antiplasmodial activity of the PanAms is decreased since they are degraded by pantetheinase (13), a ubiquitous enzyme of the Vanin protein family that is present in serum (16,17). Pantetheinase normally catalyzes the hydrolysis of pantetheine (a CoA-derived metabolite) to for...
BackgroundEighty per cent of Malawi’s 8 million children live in rural areas, and there is an extensive tiered health system infrastructure from village health clinics to district hospitals which refers patients to one of the four central hospitals. The clinics and district hospitals are staffed by nurses, non-physician clinicians and recently qualified doctors. There are 16 paediatric specialists working in two of the four central hospitals which serve the urban population as well as accepting referrals from district hospitals. In order to provide expert paediatric care as close to home as possible, we describe our plan to task share within a managed clinical network and our hypothesis that this will improve paediatric care and child health.Presentation of the hypothesisManaged clinical networks have been found to improve equity of care in rural districts and to ensure that the correct care is provided as close to home as possible. A network for paediatric care in Malawi with mentoring of non-physician clinicians based in a district hospital by paediatricians based at the central hospitals will establish and sustain clinical referral pathways in both directions. Ultimately, the plan envisages four managed paediatric clinical networks, each radiating from one of Malawi’s four central hospitals and covering the entire country. This model of task sharing within four hub-and-spoke networks may facilitate wider dissemination of scarce expertise and improve child healthcare in Malawi close to the child’s home.Testing the hypothesisFunding has been secured to train sufficient personnel to staff all central and district hospitals in Malawi with teams of paediatric specialists in the central hospitals and specialist non-physician clinicians in each government district hospital. The hypothesis will be tested using a natural experiment model. Data routinely collected by the Ministry of Health will be corroborated at the district. This will include case fatality rates for common childhood illness, perinatal mortality and process indicators. Data from different districts will be compared at baseline and annually until 2020 as the specialists of both cadres take up posts.Implications of the hypothesisIf a managed clinical network improves child healthcare in Malawi, it may be a potential model for the other countries in sub-Saharan Africa with similar cadres in their healthcare system and face similar challenges in terms of scarcity of specialists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.