In the diagnosis and control of various thermal systems, the philosophy of heat fluxes, and temperatures are very crucial. Temperature as an integral property of any thermal system is understood and also, has well-developed measurement approaches. Though finite difference (FD) had been used to ascertain the distribution of temperature, however, this current article investigates the impact of finite element method (FEM) on temperature distribution in a square plate geometry to compare with finite difference approach. Most times, in industries, cold and hot fluids run through rectangular channels, even in many technical types of equipment. Hence, the distribution of temperature of the plate with different boundary conditions is studied. In this work, let’s develop a finite element method (code) for the solution of a closed squared aluminum plate in a two-dimensional (2D) mixed boundary heat transfer problem at different boundary conditions. To analyze the heat conduction problems, let’s solve the two smooth mixed boundary heat conduction problems using the finite element method and compare the temperature distribution of the plate obtained using the finite difference to that of the plate obtained using the finite element method. The temperature distribution of heat conduction in the 2D heated plate using a finite element method was used to justify the effectiveness of the heat conduction compared with the analytical and finite difference methods
In this work, we compared three transportation approaches to find the most efficient transportation schedule and the best transportation route for the initial feasible solution in order to maximize profit. Excel solver as a tool was used to compute the optimal solution as a validation for the optimal test.
This article considered the traditional finite element method (FEM) and adaptive finite element method (FEM) for the numerical solution of the one-dimensional boundary value problems. We established the preference or the superiority of the h-adaptive FEM to traditional FEM in high gradient problems in terms of accuracy and cost of computation. Numerical examples which confirm the performance and adaptability of the h-adaptive method over the traditional finite element method and the high accuracy of the numerical solution are presented. Detailed error analysis of linear elements was also discussed. In conclusion, h-adaptive FEM is recommended for complex systems with high gradient problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.