Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams.
Methane (CH4) is a potent greenhouse gas often emitted in low concentrations from waste sector activities. Biological oxidation techniques have the potential to offer effective methods for the remediation of such emissions. In this study, methods of improving the CH4 oxidation performance of a horizontal flow biofilm reactor (HFBR) technology, operated at low temperatures, were investigated.Three pilot scale HFBRs were operated over three phases (Phases 1, 2 & 3) lasting 310 days in total. The reactors were loaded with 13.2 g CH4/m 3 /hr during each phase and operated at an average temperature of 10 o C.In Phase 1, nutrients were added to the biofilm via a liquid nutrient feed (LNF) comprising water and nutrient mineral salts. Average removals were 4.2, 3.1 and 2.3 g CH4/m 3 /hr for HFBRs 1, 2 and 3 respectively. Commented [NU1]:In response to Reviewer #1 comment; "Authors must start the abstract with the motivational statement related to the background of study" Commented [NU2]:In response to Reviewer #2 comment; "Standardize the format of units for performance variables (methane load, methane removal, etc.) through the document included the abstract" units have been standardised as g XX/m 3 /hr In Phase 2 silicone oil was added to the LNF of all three HFBRs. Average removals increased, when compared to Phase 1, by 31%, 79% and 78% for HFBRs 1, 2 and 3 respectively.In Phase 3 a non ionic surfactant (Brij 35) was added to the LNF and silicone oil liquid phase of HFBRs 1 and 2. The operating conditions of HFBR 3 were not changed and it was used as a control. A concentration of 1.0 g Brij 35/L proved most effective in improving reactor performance; with removal rates increasing by 105% and 171% for HFBRs 1 and 2 respectively when compared to Phase 1.These results indicate the potential of liquid phase optimisation for improving mass transfer rates and removal performances in biological reactors treating CH4.
The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates.
In this laboratory study, a novel wastewater treatment technology, the air suction flow-biofilm reactor (ASF-BR) - a sequencing batch biofilm reactor technology with a passive aeration mechanism - was investigated for its efficiency in removing organic carbon, nitrogen and phosphorus, from high-strength synthetic wastewaters. A laboratory-scale ASF-BR comprising 2 reactors, 350 mm in diameter and 450 mm in height, was investigated over 2 studies (Studies 1 and 2) for a total of 430 days. Study 1 lasted a total of 166 days and involved a 9-step sequence alternating between aeration, anoxic treatment and settlement. The cycle time was 12.1 h and the reactors were operated at a substrate loading rate of 3.60 g filtered chemical oxygen demand (CODf)/m2 media/d, 0.28 g filtered total nitrogen (TNf)/m2 media/d, 0.24 g ammonium-nitrogen (NH4-N)/m2 media/d and 0.07 g ortho-phosphate (PO4-P)/m2 media/d. The average removal rates achieved during Study 1 were 98% CODf, 88% TNf, 97% NH4-N and 35% PO4-P. During Study 2 (264 days), the unit was operated at a loading rate of 2.49 g CODf/m2 media/d, 0.24 g TNf/m2 media/d, 0.20 g NH4-N/m2 media/d and 0.06 PO4-P/m2 media/d. The energy requirement during this study was reduced by modifying the treatment cycle in include fewer pumping cycles. Removal rates in Study 2 averaged 97% CODf, 86% TNf, 99% NH4-N and 76% PO4-P. The excess sludge production of the system was evaluated and detailed analyses of the treatment cycles were carried out. Biomass yields were estimated at 0.09 g SS/g CODf, removed and 0.21 g SS/g CODf, removed for Studies 1 and 2, respectively. Gene analysis showed that the use of a partial vacuum did not affect the growth of ammonia-oxidizing bacteria. The results indicate that the ASF-BR and passive aeration technologies can offer efficient alternatives to existing technologies.
Three pilot-scale, horizontal-flow biofilm reactors (HFBRs 1-3) were used to treat methane (CH 4 )-contaminated air to assess the potential of this technology to manage emissions from agricultural activities, waste and wastewater treatment facilities, and landfills. The study was conducted over two phases (Phase 1, lasting 90 days and Phase 2, lasting 45 days). The reactors were operated at 10 C (typical of ambient air and wastewater temperatures in northern Europe), and were simultaneously dosed with CH 4 -contaminated air and a synthetic wastewater (SWW). The influent loading rates to the reactors were 8.6 g CH 4 /m 3 /hr (4.3 g CH 4 /m 2 TPSA/hr; where TPSA is top plan surface area). Despite the low operating temperatures, an overall average removal of 4.63 g CH 4 /m 3 /day was observed during Phase 2. The maximum removal efficiency (RE) for the trial was 88%. Potential (maximum) rates of methane oxidation were measured and indicated that biofilm samples taken from various regions in the HFBRs had mostly equal CH 4 removal potential. In situ activity rates were dependent on which part of the reactor samples were obtained. The results indicate the potential of the HFBR, a simple and robust technology, to biologically treat CH 4 emissions. Implications:The results of this study indicate that the HFBR technology could be effectively applied to the reduction of greenhouse gas emissions from wastewater treatment plants and agricultural facilities at lower temperatures common to northern Europe. This could reduce the carbon footprint of waste treatment and agricultural livestock facilities. Activity tests indicate that methanotrophic communities can be supported at these temperatures. Furthermore, these data can lead to improved reactor design and optimization by allowing conditions to be engineered to allow for improved removal rates, particularly at lower temperatures. The technology is simple to construct and operate, and with some optimization of the liquid phase to improve mass transfer, the HFBR represents a viable, cost-effective solution for these emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.