Abstract-Zoologists have long studied species distinctions, but until recently a quantitative system which could be applied to all birds which satisfies rigor and repeatability was absent from the zoology literature. A system which uses morphology, acoustic and plumage evidence to review species status of bird populations was presented by Tobias et al. The acoustic evidence in that work was extracted using manual inspection of spectrograms. The current work seeks to automate this process. Signal processing techniques are employed in this paper to automate the extraction of the acoustic features: maximum, minimum and peak frequency, and bandwidth. YIN-bird, a pitch detection algorithm optimized for birds, and sine-track method, successfully applied to bird species recognition previously, are the automatic methods employed. The performance of automatic methods is compared to the manual method currently used by zoologists. Both methods are well suited to this task, and demonstrate the strong potential to begin to automate the task of acoustic comparison of bird species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.