The objective of this study was to understand the attitudes of professionals who work in mental health regarding the use of conversational user interfaces, or chatbots, to support people’s mental health and wellbeing. This study involves an online survey to measure the awareness and attitudes of mental healthcare professionals and experts. The findings from this survey show that more than half of the participants in the survey agreed that there are benefits associated with mental healthcare chatbots (65%, p < 0.01). The perceived importance of chatbots was also relatively high (74%, p < 0.01), with more than three-quarters (79%, p < 0.01) of respondents agreeing that mental healthcare chatbots could help their clients better manage their own health, yet chatbots are overwhelmingly perceived as not adequately understanding or displaying human emotion (86%, p < 0.01). Even though the level of personal experience with chatbots among professionals and experts in mental health has been quite low, this study shows that where they have been used, the experience has been mostly satisfactory. This study has found that as years of experience increased, there was a corresponding increase in the belief that healthcare chatbots could help clients better manage their own mental health.
This study aims to explore how machine learning classification accuracy changes with different demographic groups. The HappyDB is a dataset that contains over 100,000 happy statements, incorporating demographic information that includes marital status, gender, age, and parenthood status. Using the happiness category field, we test different types of machine learning classifiers to predict what category of happiness the statements belong to, for example, whether they indicate happiness relating to achievement or affection. The tests were initially conducted with three distinct classifiers and the best performing model was the convolutional neural network (CNN) model, which is a deep learning algorithm, achieving an F1 score of 0.897 when used with the complete dataset. This model was then used as the main classifier to further analyze the results and to establish any variety in performance when tested on different demographic groups. We analyzed the results to see if classification accuracy was improved for different demographic groups, and found that the accuracy of prediction within this dataset declined with age, with the exception of the single parent subgroup. The results also showed improved performance for the married and parent subgroups, and lower performances for the non-parent and un-married subgroups, even when investigating a balanced sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.