HIV type 1 (HIV-1) can rapidly escape from neutralizing antibody responses. The genetic basis of this escape in vivo is poorly understood. We compared the pattern of evolution of the HIV-1 env gene between individuals with recent HIV infection whose virus exhibited either a low or a high rate of escape from neutralizing antibody responses. We demonstrate that the rate of viral escape at a phenotypic level is highly variable among individuals, and is strongly correlated with the rate of amino acid substitutions. We show that dramatic escape from neutralizing antibodies can occur in the relative absence of changes in glycosylation or insertions and deletions (''indels'') in the envelope; conversely, changes in glycosylation and indels occur even in the absence of neutralizing antibody responses. Comparison of our data with the predictions of a mathematical model support a mechanism in which escape from neutralizing antibodies occurs via many amino acid substitutions, with low cross-neutralization between closely related viral strains. Our results suggest that autologous neutralizing antibody responses may play a pivotal role in the diversification of HIV-1 envelope during the early stages of infection.selection ͉ glycosylation
Most human immunodeficiency virus type 1 (HIV-1) strains require either the CXCR4 or CCR5 chemokine receptor to efficiently enter cells. Blocking viral binding to these coreceptors is an attractive therapeutic target. Currently, several coreceptor antagonists are being evaluated in clinical trials that require characterization of coreceptor tropism for enrollment. In this report, we describe the development of an automated and accurate procedure for determining HIV-1 coreceptor tropism (Trofile) and its validation for routine laboratory testing. HIV-1 pseudoviruses are generated using full-length env genes derived from patient virus populations. Coreceptor tropism is determined by measuring the abilities of these pseudovirus populations to efficiently infect CD4 ؉ /U87 cells expressing either the CXCR4 or CCR5 coreceptor. Viruses exclusively and efficiently infecting CXCR4 ؉ /CD4 ؉ /U87 cells are designated X4-tropic. Conversely, viruses exclusively and efficiently infecting CCR5 ؉ /CD4 ؉ /U87 cells are designated R5-tropic. Viruses capable of infecting both CXCR4 ؉ /CD4 ؉ /U87 and CCR5 ؉ /CD4 ؉ /U87 cells are designated dual/mixed-tropic. Assay accuracy and reproducibility were established by evaluating the tropisms of well-characterized viruses and the variability among replicate results from samples tested repeatedly. The viral subtype, hepatitis B virus or hepatitis C virus coinfection, and the plasma viral load did not affect assay performance. Minority subpopulations with alternate tropisms were reliably detected when present at 5 to 10%. The plasma viral load above which samples can be amplified efficiently in the Trofile assay is 1,000 copies per ml of plasma. Trofile has been automated for high-throughput use; it can be used to identify patients most likely to benefit from treatment regimens that include a coreceptor inhibitor and to monitor patients on treatment for the emergence of resistant virus populations that switch coreceptor tropism.
The development of a quantitative understanding of viral evolution and the fitness landscape in HIV-1 drug resistance is a formidable challenge given the large number of available drugs and drug resistance mutations. We analyzed a dataset measuring the in vitro fitness of 70,081 virus samples isolated from HIV-1 subtype B infected individuals undergoing routine drug resistance testing. We assayed virus samples for in vitro replicative capacity in the absence of drugs as well as in the presence of 15 individual drugs. We employed a generalized kernel ridge regression to estimate main fitness effects and epistatic interactions of 1,859 single amino acid variants found within the HIV-1 protease and reverse transcriptase sequences. Models including epistatic interactions predict an average of 54.8% of the variance in replicative capacity across the 16 different environments and substantially outperform models based on main fitness effects only. We find that the fitness landscape of HIV-1 protease and reverse transcriptase is characterized by strong epistasis.
Reproductive strategies such as sexual reproduction and recombination that involve the shuffling of parental genomes for the production of offspring are ubiquitous in nature. However, their evolutionary benefit remains unclear. Many theories have identified potential benefits, but progress is hampered by the scarcity of relevant data. One class of theories is based on the assumption that mutations affecting fitness exhibit negative epistasis. Retroviruses recombine frequently and thus provide a unique opportunity to test these theories. Using amino acid sequence data and fitness values from 9466 human immunodeficiency virus 1 (HIV-1) isolates, we find in contrast to these theories strong statistical evidence for a predominance of positive epistasis in HIV-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.