Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machine learning can successfully predict catalytic turnover numbers in Escherichia coli based on integrated data on enzyme biochemistry, protein structure, and network context. We identify a diverse set of features that are consistently predictive for both in vivo and in vitro enzyme turnover rates, revealing novel protein structural correlates of catalytic turnover. We use our predictions to parameterize two mechanistic genome-scale modelling frameworks for proteome-limited metabolism, leading to significantly higher accuracy in the prediction of quantitative proteome data than previous approaches. The presented machine learning models thus provide a valuable tool for understanding metabolism and the proteome at the genome scale, and elucidate structural, biochemical, and network properties that underlie enzyme kinetics.
Genome-scale models of metabolism and macromolecular expression (ME-models) explicitly compute the optimal proteome composition of a growing cell. ME-models expand upon the well-established genome-scale models of metabolism (M-models), and they enable a new fundamental understanding of cellular growth. ME-models have increased predictive capabilities and accuracy due to their inclusion of the biosynthetic costs for the machinery of life, but they come with a significant increase in model size and complexity. This challenge results in models which are both difficult to compute and challenging to understand conceptually. As a result, ME-models exist for only two organisms (Escherichia coli and Thermotoga maritima) and are still used by relatively few researchers. To address these challenges, we have developed a new software framework called COBRAme for building and simulating ME-models. It is coded in Python and built on COBRApy, a popular platform for using M-models. COBRAme streamlines computation and analysis of ME-models. It provides tools to simplify constructing and editing ME-models to enable ME-model reconstructions for new organisms. We used COBRAme to reconstruct a condensed E. coli ME-model called iJL1678b-ME. This reformulated model gives functionally identical solutions to previous E. coli ME-models while using 1/6 the number of free variables and solving in less than 10 minutes, a marked improvement over the 6 hour solve time of previous ME-model formulations. Errors in previous ME-models were also corrected leading to 52 additional genes that must be expressed in iJL1678b-ME to grow aerobically in glucose minimal in silico media. This manuscript outlines the architecture of COBRAme and demonstrates how ME-models can be created, modified, and shared most efficiently using the new software framework.
Escherichia coli is considered to be the best-known microorganism given the large number of published studies detailing its genes, genome, and biochemical functions of its molecular components. This vast literature has been systematically assembled into a reconstruction of the biochemical reaction networks that underlie E. coli's functions; a process which is now being applied to an increasing number of microorganisms. Genome-scale reconstructed networks represent organized and systematized knowledge-bases that have multiple uses, including conversion into computational models that interpret and predict phenotypic states and the consequences of environmental and genetic perturbations. These genome-scale models (GEMs) now enable us to develop pan-genome analyses that provide mechanistic insights, detail the selection pressures on proteome allocation, and address stress phenotypes. In this Review, we first discuss the overall development of GEMs and their applications. Next, we review the evolution of the most complete GEM that has been developed to date: the E. coli GEM. Finally, we explore three emerging areas in genome-scale modeling of microbial phenotypes: collections of strainspecific models, metabolic and macromolecular expression models, and simulation of stress responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.