Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Host associated microbial communities play important roles in wildlife health, but these dynamics can be influenced by environmental factors. Urbanization has numerous consequences on wildlife; however, the degree to which wildlife associated bacterial communities and potential bacterial pathogens vary across urban to rural/native habitat gradients remains largely unknown. We used 16S rRNA gene amplicon sequencing to examine bacterial communities found on mountain chickadee (Poecile gambeli) feathers and nests in urban and rural habitats. Feathers and nests in urban and rural sites had similar abundances of major bacterial phyla and dominant genera with pathogenic members. However, richness of bacterial communities and potential pathogens on birds were higher in urban habitats, and potential pathogens accounted for some of the differences in bacterial occurrence between urban and rural environments. We predicted habitat using potential pathogen occurrence with a 90% success rate for feather bacteria, and a 72.2% success rate for nest bacteria, suggesting an influence of urban environments on potential pathogen presence. We additionally observed similarities in bacterial communities between nests and their occupants, suggesting bacterial transmission between them. These findings improve our understanding of the bacterial communities associated with urban wildlife and suggest that urbanization may impact wildlife associated bacterial community compositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.