The elevated ultimate pH (pH u ) found in wooden breast (WB) meat suggests an altered muscular energetic status in WB but also could be related to a prematurely terminated post-mortem pH decline. The aims of this study were to explore the factors contributing to the elevated pH u and establish whether the occurrence of WB defect alters muscle post-mortem carbohydrate metabolism and determine if the contractile apparatus reflects such changes. A total of 24 carcasses from Ross 308 male chickens were obtained from a commercial producer and harvested using commercial processing procedures. Carcasses were categorized into unaffected (NORM) and WB groups (n = 12 each), and samples were collected from cranial bone-in pectoralis major (PM) muscles at 15 min and 24 h post-mortem for the determination of pH, glycolytic metabolites, adenonucleotides, buffering capacity, phosphofructokinase (PFK) activity, and in vitro pH decline. Twenty-four additional deboned PM samples (12 NORM and 12 WB) were collected from the same processing plant to assess muscle histology and sarcomere length at four different locations throughout the PM muscle. Data show that the reduced glycolytic potential of WB muscles only partially explains the higher (P < 0.001) pH u of WB meat, as residual glycogen along with unaltered PFK activity suggests that neither glycogen nor a deficiency of PFK is responsible for arresting glycolysis prematurely. The dramatic reduction in ATP concentrations in the early postmortem period suggests a defective ATP-generating pathway that might be responsible for the reduced pH decline in WB samples. Further, the addition of excess of ATPase extended post-mortem glycolysis of WB meat in an in vitro glycolytic system. WBaffected samples have longer (P < 0.001) sarcomeres compared to NORM, indicating the existence of compromised energy-generating pathways in myopathic muscles that may have had consequences on the muscle contraction and tension development, as in vivo, also during the post-mortem period. Considering the overall reduced
Obesity is a complex metabolic disorder that often leads to a decrease in insulin sensitivity, chronic inflammation, and overall decline in human health and well‐being. In mouse skeletal muscle, obesity has been shown to impair muscle regeneration after injury; however, the mechanism underlying these changes has yet to be determined. To test whether there is a negative impact of obesity on satellite cell (SC) decisions and behaviors, we fed C57BL/6 mice normal chow (NC, control) or a high‐fat diet (HFD) for 10 weeks and performed SC proliferation and differentiation assays in vitro. SCs from HFD mice formed colonies with smaller size ( p < .001) compared to those from NC mice, and this decreased proliferation was confirmed ( p < .05) by BrdU incorporation. Moreover, in vitro assays showed that HFD SCs exhibited diminished ( p < .001) fusion capacity compared to NC SCs. In single fiber explants, a higher ratio of SCs experienced apoptotic events ( p < .001) in HFD mice compared to that of NC‐fed mice. In vivo lineage tracing using H2B‐GFP mice showed that SCs from HFD treatment also cycled faster ( p < .001) than their NC counterparts. In spite of all these autonomous cellular effects, obesity as triggered by high‐fat feeding did not significantly impair muscle regeneration in vivo, as reflected by the comparable cross‐sectional area ( p > .05) of the regenerating fibers in HFD and NC muscles, suggesting that other factors may mitigate the negative impact of obesity on SCs properties.
The purpose of this study was to determine the role of mitochondria in postmortem muscle metabolism. Isolated mitochondria were incorporated into a reaction buffer that mimics postmortem glycolysis with or without mitochondrial electron transport chain inhibitors. Addition of mitochondria lowered pH values at 240 and 1440min regardless of inhibitors. Reduction in pH was accompanied by enhanced glycogen degradation and lactate accumulation. To explore the mechanism responsible for this exaggerated metabolism, mitochondrial preparations were mechanically disrupted and centrifuged. Resulting supernatants and pellets each were added to the in vitro model. Mitochondrial supernatants produced similar effects as those including intact mitochondria. To narrow further our target of investigation, mitochondrial supernatants were deproteinized with perchloric acid. The effect of mitochondrial supernatant was lost after perchloric acid treatment. These data indicate that a mitochondrial-based protein is capable of increasing glycolytic flux in an in vitro model and may partially explain acid meat development in highly oxidative AMPKγ3 mutated pigs.
During postmortem metabolism, muscle pH gradually declines to reach an ultimate pH near 5.6 across most meat species. Yet, broiler pectoralis major (P. major) muscle generates meat with high ultimate pH (pH ∼ 5.9). For better understanding of the underlying mechanism responsible for this phenomenon, we evaluated the involvement of breast muscle chilling on the extent of postmortem metabolism. Broiler breast muscles were either subjected to chilling treatment (control) or left at room temperature (RT) for 120 min. P. major muscle from the RT treatment had lower ultimate pH, greater glycogen degradation and lactate accumulation. While these findings suggest that carcass chilling can contribute to the premature termination of postmortem metabolism, chilling did not fully explain the high ultimate pH of P. major muscle. Our results also revealed that glucose-6-phosphate (G6P) was very low at 24 h, and therefore we hypothesized that G6P was limiting. To test this hypothesis, muscle samples from P. major and porcine longissimus lumborum (LL) muscle were homogenized into a reaction buffer that mimics postmortem glycolysis with or without 0.5 mg/mL isolated mitochondria. While samples containing porcine LL muscle reached the normal level of ultimate pH, P. major muscle samples reached a value similar to that observed in vivo even in the presence of excess G6P, indicating that G6P was not limiting. Mitochondria enhanced the glycolytic flux and pH decline in systems containing muscle from both species. More importantly, however, was that in vitro system containing chicken with mitochondria reached pH value similar to that of samples containing LL muscle without mitochondria. To investigate further, phosphofructokinase (PFK) activity was compared in broiler P. major and porcine LL muscle at different pH values. PFK activity was lower in P. major muscle at pH 7, 6.5, and 6.2 than LL muscle. In conclusion, carcass chilling can partially contribute to the high ultimate pH of broiler P. major muscle, while low PFK activity and mitochondria content limit the flux through glycolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.