The ability to generate new concepts and ideas is among the most fascinating aspects of human cognition, but we do not have a strong understanding of the cognitive processes and representations underlying concept generation. In this paper, we study the generation of new categories using the computational and behavioral toolkit of traditional artificial category learning. Previous work in this domain has focused on how the statistical structure of known categories generalizes to generated categories, overlooking whether (and if so, how) contrast between the known and generated categories is a factor. We report three experiments demonstrating that contrast between what is known and what is created is of fundamental importance for categorization. We propose two novel approaches to modeling category contrast: one focused on exemplar dissimilarity and another on the representativeness heuristic. Our experiments and computational analyses demonstrate that both models capture different aspects of contrast’s role in categorization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.