Rationale
The regenerative potential of the heart is insufficient to fully restore functioning myocardium after injury, motivating the quest for a cell-based replacement strategy. Bone marrow derived mesenchymal stem cells (MSC) have the capacity for cardiac repair that appears to exceed their capacity for differentiation into cardiac myocytes.
Objective
Here we test the hypothesis that bone marrow derived MSCs stimulate the proliferation and differentiation of endogenous cardiac stem cells (CSCs) as part of their regenerative repertoire.
Methods And Results
Female Yorkshire pigs (n=31) underwent experimental myocardial Infarction (MI); and 3 days later received transendocardial injections of allogeneic male bone marrow-derived MSCs, MSC concentrated conditioned medium (CCM), or placebo (Plasmalyte). A no-injection control group was also studied. MSCs engrafted and differentiated into cardiomyocytes and vascular structures. In addition, endogenous c-kit+ CSCs increased 20-fold in MSC treated animals vs. controls (p<0.001), there was a 6-fold increase in GATA-4+ CSCs in MSC vs. control (p<0.001), and mitotic myocytes increased 4-fold. Porcine endomyocardial biopsies were harvested and plated as organotypic cultures in the presence or absence of MSC feeder layers. In vitro, MSCs stimulated c-kit+ CSCs proliferation into enriched populations of adult cardioblasts that expressed Nkx2-5 and troponin I.
Conclusions
MSCs stimulate host CSCs, a new mechanism of action underlying successful cell-based therapeutics.
Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an important regulator of T cell homeostasis. Ligation of this receptor leads to prominent downregulation of T cell proliferation, mainly as a consequence of interference with IL-2 production. We here report that CTLA-4 engagement strikingly selectively shuts off activation of downstream T cell receptor (TCR)/CD28 signaling events, i.e., activation of the microtubule-associated protein kinase (MAPKs) ERK and JNK. In sharp contrast, proximal TCR signaling events such as ZAP70 and TCR-ζ chain phosphorylation are not affected by CTLA-4 engagement on activated T cells. Since activation of the ERK and JNK kinases is required for stimulation of interleukin (IL)-2 transcription, these data provide a molecular explanation for the block in IL-2 production imposed by CTLA-4.
Summary
Swine monocytes constitute a heterogeneous population of cells which can be divided into four subsets based on the expression of SWC3, CD14, CD163 and swine leucocyte antigen (SLA) DR markers. These subsets appear to represent different maturation stages in a pathway along which these cells up‐regulate the expression of SLA DR and CD163 antigens and reduce that of CD14. Differences in the expression of adhesion and costimulatory molecules are also patent, with a progressive increase in the expression of CD11a, wCD11R1, CD29, CD49d, CD61, CD1a and CD80/86, and a concomitant decrease in that of wCD11R2. Besides, these subsets differ in their capacity for tumour necrosis factor‐α (TNF‐α) production in response to lipopolysaccharide + interferon‐γ. The CD163+ CD14− SLA DR+ subset produces higher amounts of TNF‐α than the CD163− CD14+ SLA DR− subset, whereas CD163+ CD14+ SLA DR+ and CD163− CD14+ SLA DR+ subsets show intermediate values. CD163+ monocytes also display a higher ability to present soluble antigens to T cells than CD163− monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.