The antimicrobial activity of different edible vegetable oils was studied. In vitro results revealed that the oils from olive fruits had a strong bactericidal action against a broad spectrum of microorganisms, this effect being higher in general against Gram-positive than Gram-negative bacteria. Thus, olive oils showed bactericidal activity not only against harmful bacteria of the intestinal microbiota (Clostridium perfringens and Escherichia coli) also against beneficial microorganisms such as Lactobacillus acidophilus and Bifidobacterium bifidum. Otherwise, most of the foodborne pathogens tested (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, Yersinia sp., and Shigella sonnei) did not survive after 1 h of contact with olive oils. The dialdehydic form of decarboxymethyl oleuropein and ligstroside aglycons, hydroxytyrosol and tyrosol, were the phenolic compounds that statistically correlated with bacterial survival. These findings were confirmed by testing each individual phenolic compound, isolated by HPLC, against L. monocytogenes. In particular, the dialdehydic form of decarboxymethyl ligstroside aglycon showed a potent antimicrobial activity. These results indicate that not all oils classified as "olive oil" had similar bactericidal effects and that this bioactivity depended on their content of certain phenolic compounds.
Virgin olive oils were subjected to simulated common domestic processing, including frying, microwave heating, and boiling with water in a pressure cooker. The impact of these processes on polyphenol content and physicochemical characteristics of oils was assessed. Thermal oxidation of oils at 180 degrees C caused a significant decrease in hydroxytyrosol- and tyrosol-like substances. In contrast, oils heated for 25 h still retained a high proportion of the lignans 1-acetoxypinoresinol and pinoresinol. Thermal oxidation also resulted in a rapid degradation of alpha-tocopherol and the glyceridic fraction of oils. Microwave heating of oils for 10 min caused only minor losses in polyphenols, and the oil degradation was lower than that in thermoxidation assays. Again, lignans were the least affected polyphenols and did not change during microwave heating. Boiling a mixture of virgin olive oil and water in a pressure cooker for 30 min provoked the hydrolysis of the secoiridoid aglycons and the diffusion of the free phenolics hydroxytyrosol and tyrosol from the oil to the water phase. Losses of polyphenols were detected only at pH lower than 6. Moreover, alpha-tocopherol and the glyceridic fraction of oils were not modified during this process. It is worth noting that all the heating methods assayed resulted in more severe polyphenols losses and oil degradation for Arbequina than for Picual oil, which could be related to the lower content in polyunsaturated fatty acids of the latter olive cultivar. These findings may be relevant to the choice of cooking method and olive oil cultivar to increase the intake of olive polyphenols.
There is increasing interest in olive polyphenols because of their biological properties as well as their contribution to the color, taste, and shelf life of olive products. However, some of these compounds remain unidentified. It has been shown that hydroxytyrosol 4-beta-D-glucoside (4-beta-D-glucosyl-3-hydroxyphenylethanol) coeluted with hydroxytyrosol [(3,4-dihydroxyphenyl)ethanol] under reversed phase conditions in the phenolic chromatograms of olive pulp, vegetation water, and pomace of olive oil processing. A method to separate this compound from hydroxytyrosol by HPLC has been developed. The concentration of this glucoside increased in olive pulp with maturation and could be the main phenolic compound in mature olives. In contrast, the presence of this compound was not detected in olive oil by using HPLC-MS. The compound must be considered both in table olives and olive oil processing because of its glucose and hydroxytyrosol contribution to these products.
Polyphenols were determined by HPLC in the juice and oil of packed table olives. The phenolic compositions of the two phases were very different, hydroxytyrosol and tyrosol being the main polyphenols in olive juice and tyrosol acetate, hydroxtyrosol acetate, hydroxytyrosol, tyrosol, and lignans (1-acetoxypinoresinol and pinoresinol) in oil. The type of processing had a marked influence on the concentration of polyphenols in olive juice and little on the content in oil. The analyses carried out on 48 samples showed that turning color olives in brine had the highest concentration in polyphenols ( approximately 1200 mg/kg), whereas oxidized olives had the lowest ( approximately 200 mg/kg). Among olive cultivars, Manzanilla had a higher concentration than Hojiblanca and Gordal. The type of olive presentation also influenced the concentration of polyphenols in olives, decreasing in the order plain > pitted > stuffed. The results obtained in this work indicate that table olives can be considered a good source of phenolic antioxidants, although their concentration depends on olive cultivar and processing method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.