SARS-Cov-2 was found responsible for the disease COVID-19, which has spread worldwide. No specific therapies/vaccines are yet available for the treatment of COVID-19. Drug repositioning may offer a strategy and a number of drugs have been repurposed, including lopinavir/ritonavir, remdesivir, favipiravir and tocilizumab. This paper describes the main pharmacological properties of such drugs administered to patients with COVID-19, focusing on their antiviral, immunemodulatory and/or anti-inflammatory actions. Where available, data from clinical trials involving patients with COVID-19 are reported. Preliminary clinical trials seem to support their benefit. However, such drugs in COVID-19 patients have peculiar safety profiles. Thus, adequate clinical trials are necessary for these compounds. Nevertheless, while waiting for effective preventive measures i.e. vaccines, many clinical trials on drugs belonging to different therapeutic classes are currently underway. Their results will help us in defining the best way to treat COVID-19 and reducing its symptoms and complications.
The new coronavirus outbreak is an ongoing pandemic that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The new coronavirus SARS-Cov-2 belongs to the subfamily of β−coronaviruses and shares 79.5% of the genetic sequence of SARS-CoV, the causative agent of the epidemic that started in 2002 and ended in 2004.Considering the clinical impact of the new outbreak, it is highly important to study the potential responses of the human immune system during the SARS-CoV-2 infection as well as the role of virus-specific T cells and by B-lymphocytes. Moreover, specific data on the production of IgG and IgM is crucial to allow the rapid identification of the infection. In this paper we also described the importance of sensitive and specific rapid test for SARS-CoV-2. Indeed, this test represents an important immunological tool aimed at identifying the precise phase of the infection in order to undertake a more appropriate pharmacological treatment. Lastly, we provided an overview of pharmacological treatments aimed to reduce inflammatory processes underlying the infection and the need for the discovery of a new vaccine against SARS-CoV-2.
Doxorubicin is a highly effective anticancer drug, but its clinical application is hampered by cardiotoxicity. Asymptomatic diastolic dysfunction can be the earliest manifestation of doxorubicin cardiotoxicity. Therefore, a search for therapeutic intervention that can interfere with early manifestations and possibly prevent later development of cardiotoxicity is warranted. Increased doxorubicin-dependent ROS may explain, in part, Ca 2+ and Na + overload that contributes to diastolic dysfunction and development of heart failure. Therefore, we tested whether the administration of ranolazine, a selective blocker of late Na + current, immediately after completing doxorubicin therapy, could affect diastolic dysfunction and interfere with the progression of functional decline.
EXPERIMENTAL APPROACHFischer 344 rats received a cumulative dose of doxorubicin of 15 mg·kg À1 over a period of 2 weeks. After the assessment of diastolic dysfunction, the animals were treated with ranolazine (80 mg·kg À1 , daily) for the following 4 weeks.
KEY RESULTSWhile diastolic and systolic function progressively deteriorated in doxorubicin-treated animals, treatment with ranolazine relieved diastolic dysfunction and prevented worsening of systolic function, decreasing mortality. Ranolazine lowered myocardial NADPH oxidase 2 expression and oxidative/nitrative stress. Expression of the Na + /Ca 2+ exchanger 1 and Na v 1.5 channels was reduced and of the sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase 2 protein was increased. In addition, ranolazine lowered doxorubicin-induced hyper-phosphorylation and oxidation of Ca 2+ /calmodulin-dependent protein kinase II, and decreased myocardial fibrosis.
CONCLUSIONS AND IMPLICATIONSRanolazine, by the increased Na + influx, induced by doxorubicin, altered cardiac Ca 2+ and Na + handling and attenuated diastolic dysfunction induced by doxorubicin, thus preventing the progression of cardiomyopathy.
LINKED ARTICLES
Although clinical manifestations of the 2019 novel coronavirus disease pandemic (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), are mainly respiratory symptoms, patients can also develop severe cardiovascular damage. Therefore, understanding the damage caused by SARS-COV-2 to the cardiovascular system and the underlying mechanisms is fundamental. The cardiovascular damage may be related to the imbalance of the renin-angiotensin-system (RAS) as this virus binds the Angiotensin-Converting-Enzyme 2 (ACE2), expressed on the lung alveolar epithelial cells, to enter into cells. Virus internalization may cause a downregulation of ACE2 on host cell surface that could lead to a local increased level of angiotensin II (AII) and a reduced level of angiotensin 1-7 (A1-7). An imbalance between these angiotensins may be responsible for the lung and heart damage. Pharmacological strategies that interfere with the viral attachment to ACE2 (umifenovir and hydroxychloroquine/chloroquine) or that modulate the RAS (analogous of A1-7 and ACE2, losartan) are in clinical development for COVID-19. The use of RAS inhibitors has also become a matter of public concern as these drugs may increase the mRNA expression and levels of ACE2 and impact the virulence and transmission of SARS-COV-2. Data on the effect of RAS inhibitors on ACE2 mRNA expression are scarce. Scientific societies expressed their opinion on continuing the therapy with RAS inhibitors in patients with COVID-19 and underlying cardiovascular diseases. In conclusion, RAS may play a role in SARS-COV-2-induced cardiac and pulmonary damage. Further studies are needed to better understand the role of RAS in COVID-19 and to guide decision on the use of RAS inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.