Forest ecologists often evaluate how well the species composition of saplings in the understory matches that of the canopy: absence of juveniles suggests that a tree species is suffering population decline. Here we offer a theoretical and empirical test of this assertion using data from a 50-ha census plot in Panama. Theory indicates that higher rates of population change, lambda, lead to more steeply declining size distributions (more juveniles relative to adults). But other parameters also affect the size distribution: lower growth rate of juveniles and lower survival at any size produce more steeply declining size distributions as well. Empirical evaluation of 216 tree populations showed that juvenile growth was the strongest predictor of size distribution, in the direction predicted by theory. Size distribution did correlate with population growth, but weakly and only in understory species, not canopy species. Size distribution did not correlate with the growth rate of larger individuals nor with survival. Results suggest that static in formation on the size distribution is not a good predictor of future population trends, while demographic information is. Fast-growing species will have fewer juveniles in the understory than slow growing species, even when population growth is equal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.