Strawberry is a typical nonclimacteric fruit, whose ripening mechanism needs to be further investigated. Sucrose has been recently proved as a signal molecule, participating in strawberry fruit ripening and related processes. While in the effects of sucrose application timing and concentration on ripening, fruit qualities remain unclear, as well as the transcriptome-wide details about the effects of sucrose on the gene expression involved in ripening-related processes. In this study, strawberry fruits at the degreening (DG), white (W), and initial-red (IR) stages were treated with different concentration of sucrose. The results showed that anthocyanin was increased while total polyphenol concentration (TPC) and total flavonoid concentration (TFC) were decreased during fruit development after sucrose treatment. Interestingly, It was showed that 100 mM sucrose application at the DG stage had the most obvious effects on fruit ripening; it made all the fruits turn into full-red (FR) around 4 days (d) earlier than the control, while it did not affect fruit quality traits and most bioactive compounds in the FR fruits. Subsequently, RNA sequencing (RNAseq) of the fruits collected at 8 days after 100 mM sucrose treatment was carried out. It was suggested that 993 genes were differentially expressed comparing with the control. Transcriptome-based expression analysis revealed that sucrose induced the expression of genes involved in the AsA and anthocyanin biosynthesis, while largely suppressed the expression of genes in TCA. The results obtained in this study provided more expression profiles of ripening-related genes under the treatment of sucrose, which will contribute to a better understanding for the mechanism underlying sucrose-induced fruit ripening.
Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) and plastid glyceraldehyde-3-phosphate dehydrogenase (GAPCp) are key enzymes in glycolysis. Besides their catalytic function, GAPC/GAPCp participates in the regulation of plant stress response and growth and development. However, the involvement of GAPC/GAPCp in the regulation of fruit ripening is unclear. In this study, FaGAPC2 and FaGAPCp1 in strawberries were isolated and analyzed. FaGAPC2 and FaGAPCp1 transcripts showed high transcript levels in the fruit. Transient overexpression of FaGAPC2 and FaGAPCp1 delayed fruit ripening, whereas RNA interference promoted fruit ripening and affected fruit anthocyanins and sucrose levels. Change in the expression patterns of FaGAPC2 and FaGAPCp1 also influenced the expression of several glycolysis-related and ripening-related genes such as CEL1, CEL2, SS, ANS, MYB5, NCED1, ABI1, ALDO, PK, and G6PDH, and H2O2 level and reduced glutathione (GSH)/glutathione disulfide (GSSG) redox potential. Meanwhile, metabolomics experiments showed that transient overexpression of FaGAPCp1 resulted in a decrease in anthocyanins, flavonoids, organic acid, amino acids, and their derivatives. In addition, abscisic acid (ABA) and sucrose treatment induced the production of large amounts of H2O2 and inhibited the expression of FaGAPC2/FaGAPCp1 in strawberry fruit. These results revealed that FaGAPC2/FaGAPCp1 is a negative regulator of ABA and sucrose mediated fruit ripening which can be regulated by oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.