Beamforming has been extensively investigated for multi-channel audio processing tasks. Recently, learning-based beamforming methods, sometimes called neural beamformers, have achieved significant improvements in both signal quality (e.g. signal-to-noise ratio (SNR)) and speech recognition (e.g. word error rate (WER)). Such systems are generally non-causal and require a large context for robust estimation of inter-channel features, which is impractical in applications requiring low-latency responses. In this paper, we propose filter-and-sum network (FaSNet), a time-domain, filterbased beamforming approach suitable for low-latency scenarios. FaSNet has a two-stage system design that first learns frame-level time-domain adaptive beamforming filters for a selected reference channel, and then calculate the filters for all remaining channels. The filtered outputs at all channels are summed to generate the final output. Experiments show that despite its small model size, FaSNet is able to outperform several traditional oracle beamformers with respect to scale-invariant signal-to-noise ratio (SI-SNR) in reverberant speech enhancement and separation tasks. Moreover, when trained with a frequency-domain objective function on the CHiME-3 dataset, FaSNet achieves 14.3% relative word error rate reduction (RWERR) compared with the baseline model. These results show the efficacy of FaSNet particularly in reverberant and noisy signal conditions.
Speech perception in crowded environments is challenging for hearing-impaired listeners. Assistive hearing devices cannot lower interfering speakers without knowing which speaker the listener is focusing on. One possible solution is auditory attention decoding in which the brainwaves of listeners are compared with sound sources to determine the attended source, which can then be amplified to facilitate hearing. In realistic situations, however, only mixed audio is available. We utilize a novel speech separation algorithm to automatically separate speakers in mixed audio, with no need for the speakers to have prior training. Our results show that auditory attention decoding with automatically separated speakers is as accurate and fast as using clean speech sounds. The proposed method significantly improves the subjective and objective quality of the attended speaker. Our study addresses a major obstacle in actualization of auditory attention decoding that can assist hearing-impaired listeners and reduce listening effort for normal-hearing subjects.
Deep learning speech separation algorithms have achieved great success in improving the quality and intelligibility of separated speech from mixed audio. Most previous methods focused on generating a single-channel output for each of the target speakers, hence discarding the spatial cues needed for the localization of sound sources in space. However, preserving the spatial information is important in many applications that aim to accurately render the acoustic scene such as in hearing aids and augmented reality (AR). Here, we propose a speech separation algorithm that preserves the interaural cues of separated sound sources and can be implemented with low latency and high fidelity, therefore enabling a real-time modification of the acoustic scene. Based on the time-domain audio separation network (TasNet), a single-channel time-domain speech separation system that can be implemented in real-time, we propose a multi-input-multi-output (MIMO) end-to-end extension of TasNet that takes binaural mixed audio as input and simultaneously separates target speakers in both channels. Experimental results show that the proposed end-to-end MIMO system is able to significantly improve the separation performance and keep the perceived location of the modified sources intact in various acoustic scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.