This study investigates the feasibility of applying complex networks to fine-grained language classification and of employing word co-occurrence networks based on parallel texts as a substitute for syntactic dependency networks in complex-network-based language classification. 14 word co-occurrence networks were constructed based on parallel texts of 12 Slavic languages and 2 non-Slavic languages, respectively. With appropriate combinations of major parameters of these networks, cluster analysis was able to distinguish the Slavic languages from the non-Slavic and correctly group the Slavic languages into their respective sub-branches. Moreover, the clustering could also capture the genetic relationships of some of these Slavic languages within their sub-branches. The results have shown that word co-occurrence networks based on parallel texts are applicable to fine-grained language classification and they constitute a more convenient substitute for syntactic dependency networks in complex-networkbased language classification. word co-occurrence network, Slavic languages, parallel texts, language classification, cluster analysis
Citation:Liu H T, Cong J. Language clustering with word co-occurrence networks based on parallel texts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.