Lactobacillus rhamnosus GG (LGG) performs many physiological functions, but the fermentation time is long when fermented milk is prepared using LGG alone. To shorten the fermentation time, we analyzed the nutrient requirement profiles of LGG. Based on nutrient requirement profiles, we evaluated the effects on the fermentation time, quality, and sensory properties of unmodified cow's milk fermented by LGG alone. According to the consumption and necessary patterns of amino acids and those of purine, pyrimidine, vitamins, metal ions, and nutrients essential to LGG, we selected Cys, Ser, Arg, Pro, Asp, Glu, guanine, uracil, and xanthine with which to supplement milk. Compared with fermented milk prepared using LGG alone in unmodified milk, the fermentation time of supplemented milk was shortened by 5 h. Viable cell counts, titratable acidity, and water-retaining capability of the fermented milk were improved by addition of nutrient supplements. Supplementation with nutrients did not obviously change the sensory and textural characteristics of fermented milk.
Elucidating the amino acid (AA) metabolism patterns of Streptococcus thermophilus has important effects on the precise design of nitrogen sources for high-cell-density culture. Transcriptomics and metabolomics were combined to reveal the cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine and alanine metabolic pathways in S. thermophilus MN-ZLW-002, including glutathione. The changes in the synthesis, consumption and concentration of AAs and their metabolites, as well as regulatory genes with time were revealed. The metabolism of L-cysteine, L-glutamate, L-aspartate and L-alanine generated some potential functional metabolites. The metabolism of methionine and glutamate generated potential harmful metabolites. S. thermophilus MN-ZLW-002 can synthesize glutathione. Some potential functional metabolites have similar biological functions, indicating that S. thermophilus can resist environmental stresses through multiple mechanisms. The expression of some key genes in synthesis pathway of AA indicated that cysteine, methionine, asparagine, aspartate, arginine and lysine were insufficient or imbalance between nutrient components. The accumulation of large amounts of AA metabolites might be the primary cause of the overconsumption of AAs and influence the growth of S. thermophilus. The present study revealed the metabolic profiles of abovementioned AAs as well as those of regulatory genes and metabolites. These results were beneficial to the precise design of nitrogen sources and regulation of functional metabolites for the high-cell-density culture of S. thermophilus.
The purpose of the present study was to evaluate the volatile profile of Kedong sufu, which is a typical bacteria‐fermented soybean product in China, using solid phase microextraction coupled to gas chromatography and mass spectrometry and to reveal the evolution and diversity of flavor substances for this specialty. A total of 75 compounds were identified, including 35 esters, 4 alcohols, 4 phenols, 4 aldehydes, 7 acids, 10 ketones, and 11 other compounds from sufu samples during ripening. Some volatile compounds increased with ripening time, especially hexadecenoic acid ethyl ester, methoxy acetic acid pentyl ester, benzene propanoic acid ethyl ester, ethyl 9‐hexadecenoate, ethyl oleate, ethanol, 3‐methyl‐1‐butanol, 5‐methoxy‐1‐pentanol, and eugenol; these compounds enriched the flavors and provided the typical savory taste of Kedong sufu.
Practical Application
This research elucidated the formation of flavor substances in sufu. For traditional fermented foods, this study provides a scientific basis for promoting the generation of typical flavor substances and for the precise determination of maturity time.
This study aimed to evaluate the profiles of Streptococcus thermophilus nutrient requirements to guide the design of media for high cell density culturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.