Summary1. Great efforts have been made to control soil erosion by restoring plant communities in degraded ecosystems world-wide. However, soil erosion has not been substantially reduced mainly because current restoration strategies lead to large areas of mono-specific vegetation, which are inefficient in reducing soil erosion because of their simple canopy and root structure. Therefore, an advanced understanding of how community functional composition affects soil erosion processes, as well as an improved restoration scheme to reduce soil erosion, is urgently needed. 2. We investigated the effect of community functional composition on soil erosion in restored semi-arid grasslands on the Loess Plateau of China. Community functional composition of 16 restored grasslands was quantified by community-weighted mean (CWM) and functional diversity (FD) trait values, which were calculated from nine plant functional traits of thirteen locally dominant plant species. Species richness and evenness were also measured. Soil erosion rates were measured using standard erosion plots. The multimodel inference approach was used to estimate the direction and the relative importance of these biodiversity indices in reducing soil erosion. 3. A robust and strong negative effect of functional divergence (FDiv) on soil erosion was found. The prevalence of particular trait combinations can also decrease soil erosion. The greatest control over soil erosion was exerted when the community mean root diameter was small and the root tensile strength was great. 4. Synthesis and applications: These findings imply that community functional diversity plays an important role in reducing soil erosion in semi-arid restored grasslands. This means that current restoration strategies can be greatly improved by incorporating community functional diversity into restoration design. We propose a trait-based restoration framework for reducing soil erosion, termed 'SSM' (Screening-Simulating-Maintaining). SSM aims to translate the target of community functional diversity into community assemblages that can be manipulated by practitioners. Based on this framework, a comprehensive procedure, highlighting functional diversity as the primary concern in determining optimal community assemblages, was developed to meet the pressing need for more effective restoration strategies to reduce soil erosion.
The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of plant quarantine and invasion biology because of their economic importance. Predicting which one in hundreds of potential invasive fruit fly species is most likely to establish in a region presents a significant challenge, but can be facilitated using a self organising map (SOM), which is able to analyse species associations to rank large numbers of species simultaneously with an index of establishment. A global presence/absence dataset including 180 economically significant fruit fly species in 118 countries was analysed using a SOM. We compare and contrast ranked lists from six countries selected from each continent, and also show that those countries geographically close were clustered together by the SOM analysis because they have similar fruit fly assemblages. These closely clustered countries therefore represent greater threats to each other as sources of invasive fruit fly species. Finally, we indicate how this SOM method could be utilized as an initial screen to support prioritizing fruit fly species for further research into their potential to invade a region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.