The globalization of the integrated circuit (IC) industry has raised concerns about hardware Trojans (HT), and there is an urgent need for efficient HT-detection methods of gate-level netlists. In this work, we propose an approach to detect Trojan-nodes at the gate level, based on graph learning. The proposed method does not require any golden model and can be easily integrated into the integrated circuits design flow. In addition, we further design a unioned GNN network to combine information from the input side, output side, and neighbor side of the directed graph to generate representative node embeddings. The experimental results show that it could achieve 93.4% in recall, 91.4% in F-measure, and 90.7% in precision on average across different designs, which outperforms the state-of-the-art HT detection methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.