Introduction: Epilepsy is one of the most common and serious brain syndromes and has adverse consequences on a patient's neurobiological, cognitive, psychological, and social wellbeing, thereby threatening their quality of life. Some patients with epilepsy experience poor treatment effects due to the unclear pathophysiological mechanisms of the syndrome. Dysregulation of the mammalian target of the rapamycin (mTOR) pathway is thought to play an important role in the onset and progression of some epilepsies.Methods: This review summarizes the role of the mTOR signaling pathway in the pathogenesis of epilepsy and the prospects for the use of mTOR inhibitors.
Results:The mTOR pathway functions as a vital mediator in epilepsy development through diverse mechanisms, indicating that the it has great potential as an effective target for epilepsy therapy. The excessive activation of mTOR signaling pathway leads to structural changes in neurons, inhibits autophagy, exacerbates neuron damage, affects mossy fiber sprouting, enhances neuronal excitability, increases neuroinflammation, and is closely associated with tau upregulation in epilepsy. A growing number of studies have demonstrated that mTOR inhibitors exhibit significant antiepileptic effects in both clinical applications and animal models. Specifically, rapamycin, a specific inhibitor of TOR, reduces the intensity and frequency of seizures. Clinical studies in patients with tuberous sclerosis complex have shown that rapamycin has the function of reducing seizures and improving this disease. Everolimus, a chemically modified derivative of rapamycin, has been approved as an added treatment to other antiepileptic medicines. Further explorations are needed to evaluate the therapeutic efficacy andThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.