The development of low-cost, efficient physisorbents is essential for gas adsorption and separation; however, the intrinsic tradeoff between capacity and selectivity, as well as the unavoidable shaping procedures of conventional powder sorbents, greatly limits their practical separation efficiency. Herein, an exceedingly stable iron-containing mordenite zeolite monolith with a pore system of precisely narrowed microchannels was self-assembled using a one-pot template- and binder-free process. Iron-containing mordenite monoliths that could be used directly for industrial application afforded record-high volumetric carbon dioxide uptakes (293 and 219 cubic centimeters of carbon dioxide per cubic centimeter of material at 273 and 298 K, respectively, at 1 bar pressure); excellent size-exclusive molecular sieving of carbon dioxide over argon, nitrogen, and methane; stable recyclability; and good moisture resistance capability. Column breakthrough experiments and process simulation further visualized the high separation efficiency.
Physisorption is a promising technology to cut cost for separating ethylene (C2H4) from ethane (C2H6), the most energy-intensive separation process in the petrochemical industry. However, traditional thermodynamically selective adsorbents exhibit limited C2H4/C2H6 selectivity due to their similar physiochemical properties, and the performance enhancement is typically at the expense of elevated adsorption heat. Here, we report highly-efficient C2H4/C2H6 adsorption separation in a phosphate-anion pillared metal-organic framework ZnAtzPO4 exploiting the equilibrium-kinetic synergetic effect. The periodically expanded and contracted aperture decorated with electronegative groups within ZnAtzPO4 enables effective trapping of C2H4 and impedes the diffusion of C2H6, offering an extraordinary equilibrium-kinetic combined selectivity of 32.4. The adsorption heat of C2H4 on ZnAtzPO4 (17.3 to 30.0 kJ mol−1) is substantially lower than many thermodynamically selective adsorbents because its separation capability only partially relies on thermodynamics. The separation mechanism was explored by computational simulations, and breakthrough experiments confirmed the excellent C2H4/C2H6 separation performance of ZnAtzPO4.
SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.