In this work, we reported a phenanthroline-based tetradentate ligand with hard-soft donors combined in the same molecule, N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen), for the group separation of actinides over lanthanides. The synthesis and solvent extraction as well as complexation behaviors of the ligand with actinides and lanthanides are studied experimentally and theoretically. The ligand exhibits excellent extraction ability and high selectivity toward hexavalent, tetravalent, and trivalent actinides over lanthanides in highly acidic solution. The chemical stoichiometry of Th(IV) and U(VI) complexes with Et-Tol-DAPhen is determined to be 1:1 using X-ray crystallography. The stability constants of some typical actinide and lanthanide complexes of Et-Tol-DAPhen are also determined in methanol by UV-vis spectrometry. Density functional theory (DFT) calculations reveal that the An-N bonds of the Et-Tol-DAPhen complexes have more covalent characters than the corresponding Eu-N bonds, which may in turn lead to the selectivity of Et-Tol-DAPhen toward actinides. This ligand possesses merits of both alkylamide and 2,9-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-1,10-phenanthroline (R-BTPhen) extractants for efficient actinide extraction and the selectivity toward minor actinides over lanthanides and hence renders huge potential opportunities in high-level liquid waste (HLLW) partitioning.
A series of actinide (An) species of L-An-N compounds [An = Pa-Pu, L = [N(CH2CH2NSiPr(i)3)3](3-), Pr(i) = CH(CH3)2] have been investigated using scalar relativistic density functional theory (DFT) without considering spin-orbit coupling effects. The ground state geometric and electronic structures and natural bond orbital (NBO) analysis of actinide compounds were studied systematically in neutral and anionic forms. It was found that with increasing actinide atomic number, the bond length of terminal multiple An-N1 bond decreases, in accordance with the actinide contraction. The Mayer bond order of An-N1 decreases gradually from An = Pa to Pu, which indicates a decrease in bond strength. The terminal multiple bond for L-An-N compounds contains one σ and two π molecular orbitals, and the contributions of the 6d orbital to covalency are larger in magnitude than the 5f orbital based on NBO analysis and topological analysis of electron density. This work may help in understanding of the bonding nature of An-N multiple bonds and elucidating the trends and electronic structure changes across the actinide series. It can also shed light on the construction of novel An-N multiple bonds.
Molecular and dissociative adsorption behavior of H 2 O along with the accompanying H 2 formation mechanism on the UO 2 ( 111) and ( 110) surfaces have been investigated by using DFT+U calculations. According to our calculations, the higher stability of the (111) surface leads to higher oxygen vacancy formation energy compared to the (110) surface. On the stoichiometric ( 111) and ( 110) surfaces, the first hydrogen atom of water molecule can dissociate readily with very small or no energy barrier. On the contrary, dissociation of the second one becomes the rate-determining step, and water-catalysis leads to the decrease of energy barrier from 0.92 to 0.70 eV and from 2.36 to 1.21 eV on the stoichiometric ( 111) and ( 110) surfaces, respectively. H 2 formation resulting from water dissociation may undergo two pathways in the presence of surface oxygen vacancy on the reduced UO 2 (111) surface. One is characterized by direct combination of two hydrogen atoms of one water molecule, and the other is characterized by dissociation of the first hydrogen atom and its combination with a neighboring surface hydrogen atom. The above two formation pathways possess the energy barriers of 0.56 and 0.53 eV, corresponding to the large reaction energies of −2.62 and −2.64 eV, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.