Premise: Leaf mass per area (LMA), which is an important functional trait in leaf economic spectrum and plant growth analysis, is measured from leaf discs or whole leaves. Differences between the measurement methods may lead to large differences in the estimates of LMA values. Methods: We examined to what extent estimates of LMA based on whole leaves match those based on discs using 334 woody species from a wide range of biomes (tropics, subtropics, savanna, and temperate), whether the relationship varied by leaf morphology (tissue density, leaf area, leaf thickness), punch size (0.6-and 1.0-cm diameter), and whether the extent of intraspecifc variation for each species matches. Results: Disc-based estimates of species mean LMA matched the whole-leaf estimates well, and whole-leaf LMA tended to be 9.69% higher than leaf-disc LMA. The ratio of whole-leaf LMA to leaf-disc LMA was higher for species with higher leaf tissue density and larger leaves, and variance in the ratio was greater for species with lower leaf tissue density and thinner leaves. Estimates based on small leaf discs also inflated the ratio. The extent of the intraspecific variation only weakly matched between whole-leaf and disc-based estimates (R 2 = 0.08). Conclusions: Our results suggest that simple conversion between whole-leaf and leafdisc LMA is difficult for species obtained with a small leaf punch, but it should be possible for species obtained with a large+ leaf punch. Accurately representing leaf traits will likely require careful selection between leaf-disc and whole-leaf traits depending on the objectives. Quantifying intraspecific variation using leaf discs should be also considered with caution.
Artificial light at night (ALAN) demonstrated a new ecological factor that influences organisms through multi-approach. Yet, the impacts of ALAN on understory plants remain largely unknown. We evaluated whether ALAN would affect leaf mass per area (LMA) of understory plants through a two-year field light experiment in a tropical rubber plantation in south China. We hypothesized that ALAN could impact the understory in two ways: by directly supplementing light to aboveground plant parts (which increases LMA) and indirectly affecting soil nutrient composition by attracting insects (which decreases LMA). We selected two species: Colocasia gigantea, representing shade-torelant species, and Melastoma candidum, representing light-demanding species. We measured canopy openness, LMA, soil nutrients, and individual distance away from light resources. We found a negative relationship between LMA and the strength of ALAN, indicating that ALAN may influence LMA more indirectly by enhancing soil nutrient availability rather than directly acting as a light resource. This relationship was significant for Colocasia gigantea but not for Melastoma candidum. These results suggest that ALAN might have complex and species-specific impacts on the understory ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.