γ-Cyclodextrin
metal–organic frameworks (γCDMOF)
recently emerged as biofriendly, highly porous, and crystalline materials
with potential applications in drug delivery. However, little is known
about their drug entrapment and release characteristics, which are
key parameters in the design of drug carriers. The macroscopic properties
of a material are determined by its microstructure. Thus, the characteristics
of the constitutive units of the cubic crystalline γCDMOF determine
their drug loading and release behaviors. In this study, the release
profile of prednisolone (PNS) form γCDMOF was predicted, and
the mechanism was analyzed based on the γCDMOF molecular structure.
For the first time, experimental, molecular simulation, and mathematical
modeling methods were combined to gain insights into the drug distribution
in cubic porous crystals of γCDMOF as well as on drug release
kinetics. The predicted release profile was in good agreement with
the experimental results, showing that the modeling method was reliable.
The methodology developed here could provide a reference for further
investigations of drug penetration and release in supramolecular systems.
The past two decades have witnessed the great growth of the development of novel drug carriers. However, the releasing dynamics of drug from drug carriers in vivo and the interactions between cells and drug carriers remain unclear. In this paper, liposomes were prepared to encapsulate D-luciferin, which was the substrate of luciferase and served as a model drug. Based on the theoretical calculation of active loading, methods of preparation for liposomes were optimized. Only when D-luciferin was released from liposomes or taken in by the cells could bioluminescence be produced under the catalysis of luciferase. Models of multicellular tumor spheroid (MCTS) were built with 4T1-luc cells that expressed luciferase stably. The kinetic processes of uptake and distribution of free drugs and liposomal drugs were determined with models of cell suspension, monolayer cells, MCTS, and tumor-bearing nude mice. The technology platform has been demonstrated to be effective for the study of the distribution and kinetic profiles of various liposomes as drug delivery systems.
Background: Corosolic acid is a pentacyclic triterpenoid isolated from Lagerstroemia speciosa, which is known to inhibit cancer cell proliferations. Whereas, it is unclear whether this compound has any effect on non-small cell lung cancer (NSCLC) cells. Methods: Here, we cultured A549 and PC9 cells in increasing corosolic acid concentrations, as well as treated mice with a physiologically relevant concentration of the compound, and used metabolomics analysis and high-throughput sequencing to examine its influences on cell invasion and proliferation, chemoresistance, and metastasis. Results: We found that corosolic acid inhibited cell invasion and proliferation in vivo and in vitro, as well as increase the chemosensitivity of both cell types to cisplatin. Furthermore, we found that corosolic acid destabilized the glutathione peroxidase 2-mediated redox system, which increased mitochondrial and liposomal oxidative stress. Corosolic acid also decreased the targeting protein for Xklp2 level, which inhibited PI3K/AKT signaling and induced apoptosis. In addition, the accumulation of reactive oxygen species dissociated the CCNB1/CDK1 complex and induced G2/M cell cycle arrest. Conclusion: Taken collectively, the data indicate that corosolic acid reduces NSCLC cell invasion and proliferation, as well as chemoresistance, by inducing mitochondrial and liposomal oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.