Background: Ovarian cancer (OC) is the most deadly gynaecological cancer, contributing significantly to female cancer-related deaths worldwide. Improving the outlook for OC patients depends on the identification of more reliable prognostic biomarkers for early diagnosis and survival prediction. The various roles of long non-coding RNAs (lncRNAs) in OC have attracted increasing attention. This study aimed to identify a lncRNA-based signature for survival prediction in OC patients. Methods: RNA expression data and clinical information from a large number of OC patients were downloaded from a public database. These data were regarded as a training set to construct a weighed gene co-expression network analysis (WGCNA) network, mine stable modules, and screen differentially expressed lncRNAs. The prognostic lncRNAs were screened using univariate Cox regression analysis and the optimal prognosis lncRNA combination was screened using a Cox-PH model. The finalised lncRNA combination was used to construct the risk score system, which was validated and assessed for effectiveness using other independent datasets. Further functional pathway enrichment was performed using gene set enrichment analysis (GSEA). Results: A co-expression network was constructed and four stable modules with OC-related biological functions were obtained. A total of 19 lncRNAs significantly related to prognosis of ovarian cancer were obtained using univariate Cox regression analysis, and the 5 prognostic signature lncRNAs GAS5, HCP5, PART1, SNHG11, and SNHG5 were used to establish a risk assessment system. The reliability of the prognostic scoring system was further confirmed using validation sets, which indicated that the risk assessment system could be used as an independent prognostic factor. Pathway enrichment analysis revealed that the network modules related to the above five prognostic genes were significantly associated with cell local adhesion, cancer signaling pathways, JAK-STAT signalling, and endogenous cell receptor interaction. Conclusions: The risk score system established in this study could provide a novel reliable method to identify individuals at high risk of OC. In addition, the five prognostic lncRNAs identified here are promising potential prognostic biomarkers that could help to elucidate the pathogenesis of OC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.