The present study explored the effect of long non-coding RNA-human ovarian cancer-specific transcript 2 (LncRNA-HOST2) on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721. HCC tissues and adjacent normal tissues from 162 HCC patients were collected. The HCC cell lines were assigned into the control group (regular culture), negative control (NC) group (transfected with siRNA) and experimental group (transfected with Lnc-HOST2 siRNA). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of LncRNA-HOST2. Cell proliferation was detected by CCK-8 and colony-forming assays, cell apoptosis by flow cytometry and cell migration by Scratch test. Transwell assay was used to evaluate cell migration and invasion abilities. LncRNA-HOST2 expression in the HCC tissues increased 2–10 times than that in the adjacent normal tissues. Compared with the HL-7702 cell line, LncRNA-HOST2 expression in HepG2, SMMC-7721 and Huh7 cell lines was all up-regulated, but the SMMC-7721 cell had the highest Lnc-HOST2 expression. The LncRNA-HOST2 expression in the experimental group was down-regulated as compared with the control and NC groups. In comparison with the control and NC groups, cloned cells reduced, cell apoptosis increased, clone-forming ability weakened and inhibitory rate of colony formation increased in the experimental group. The cells migrating and penetrating into the transwell chamber were fewer in the experimental group than those in the control and NC groups. The experimental group exhibited slow wound healing and decreased cell migration area after 48 h. These findings indicate that LncRNA-HOST2 can promote cell proliferation, migration and invasion and inhibit cell apoptosis in human HCC cell line SMMC-7721.
Background Breast cancer (BC) is one of the most prevalent malignancies among women globally. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are associated with BC carcinogenesis. In the current study, we explored the mechanism by which LINC00662 regulates BC. Methods Quantitative real-time PCR (qRT-PCR) assessed RNA expressions while western blot for protein levels. Kaplan Meier analysis evaluated overall survival (OS). Cytoplasmic/nuclear fractionation, RNA binding protein immunoprecipitation (RIP) and luciferase reporter assays probed into the underlying molecular mechanism of LINC00662 in BC. Xenograft model was established to explore the influence of LINC00662 on BC progression in vivo. R square graphs were utilized to represent RNA relationships. Results LINC00662 is overtly overexpressed in BC tissues and cell lines. LINC00662 knockdown hampers cell proliferation, migration, invasion and stemness. LINC00662 expression is negatively correlated with OS of BC patients. LINC00662 up-regulates SOX2 expression by competitively binding to miR-144-3p, thereby modulating BC cell progression. Xenograft experiments verified that LINC00662 promotes BC tumor growth and cell stemness in vivo. Conclusion LINC00662 enhances cell proliferation, migration, invasion and stemness in BC by targeting miR-144-3p/SOX2 axis. The findings in the present study suggested that LINC00662 could be a potential therapeutic target for BC treatment. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.