D-ɑ-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) has been approved by FDA as a safe adjuvant and widely used in drug delivery systems. The biological and physicochemical properties of TPGS provide multiple advantages for its applications in drug delivery like high biocompatibility, enhancement of drug solubility, improvement of drug permeation and selective antitumor activity. Notably, TPGS can inhibit the activity of ATP dependent P-glycoprotein and act as a potent excipient for overcoming multi-drug resistance (MDR) in tumor. In this review, we aim to discuss the recent advances of TPGS in drug delivery including TPGS based prodrugs, nitric oxide donor and polymers, and unmodified TPGS based formulations. These potential applications are focused on enhancing delivery efficiency as well as the therapeutic effect of agents, especially on overcoming MDR of tumors. It also demonstrates that the clinical translation of TPGS based nanomedicines is still faced with many challenges, which requires more detailed study on TPGS properties and based delivery system in the future.
Gold nanoparticle (AuNP) has been widely used in cancer photothermal therapy (PTT) for ablating accessible tumor, while it is insufficient for inhibiting tumor metastasis and relapse in current stage. Here, we first developed a novel immunological AuNP through intracellular generation and exocytosis for combinatorial PTT and immunotherapy. Melanoma B16F10 cells were employed to generate AuNPs first and then shed nanoparticle trapped vesicles to extracellular environment with retained tumor antigens (AuNP@B16F10). By further introducing the nanoparticles into dendritic cells (DCs), DC-derived AuNPs (AuNP@DC B16F10 ) were generated with enhanced biosafety, which can induce hyperthermia and provoke antitumor immune responses. This immunological nanoplatform demonstrated efficient inhibition or even eradication of primary tumor, tumor metastasis, as well as tumor relapse, with significantly improved overall survival of mice. With our design, the intracellularly generated AuNPs with immunological property could act as an effective treatment modality for cancer.
Blocking immune checkpoints
with monoclonal antibody has been verified
to achieve potential clinical successes for cancer immunotherapy.
However, its application has been impeded by the “cold”
tumor microenvironment. Here, weak acidity-responsive nanoparticles
co-loaded with CRISPR/Cas9 and paclitaxel (PTX) with the ability to
convert “cold” tumor into “hot” tumor
are reported. The nanoparticles exhibited high cargo packaging capacity,
superior transfection efficiency, well biocompatibility, and effective
tumor accumulation. The CRISPR/Cas9 encapsulated in nanoparticles
could specifically knock out cyclin-dependent kinase 5 gene to significantly
attenuate the expression of programmed death-ligand 1 on tumor cells.
More importantly, PTX co-delivered in nanoparticles could significantly
induce immunogenic cell death, reduce regulatory T lymphocytes, repolarize
tumor-associated macrophages, and enhance antitumor immunity. Therefore,
the nanoparticles could effectively convert cold tumor into hot tumor,
achieve effective tumor growth inhibition, and prolong overall survival
from 16 to 36 days. This research provided a referable strategy for
the development of combinatorial immunotherapy and chemotherapy.
Although cisplatin‐based neoadjuvant chemotherapy is an efficient therapy approach for triple‐negative breast cancer (TNBC), it has dismal prognosis and modestly improved survival benefit. Here, a synergistic immunotherapy of TNBC premised on the elicitation and promotion of immunogenic cell death (ICD) response, through a transformable nanoparticle‐enabled approach for contemporaneous delivery of cisplatin, adjudin, and WKYMVm is reported. The nanoparticles can sequentially respond to matrix metalloproteinases‐2, pH, and glutathione to achieve structural transformation with the advantages of optimal size change, efficient drug delivery, and well‐controlled release. Cisplatin and adjudin can synergistically amplify reactive oxygen species (ROS) cascade and eventually increase the formation of hydrogen peroxide and downstream highly toxic ROS like •OH, which can elicit ICD response by mechanisms of endoplasmic reticulum stress, apoptotic cell death, and autophagy. WKYMVm can further promote anti‐TNBC immunity by activation of formyl peptide receptor 1 to build stable interactions between dendritic cells and dying cancer cells. Thus, the nanoparticles achieve significant primary tumor regression and pulmonary metastasis inhibition as well as a remarkable survival benefit, with boosting of the innate and adaptive anti‐TNBC immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.