Neuropathic pain is still considered as incurable disease as current therapies are not ideal in terms of efficacy and tolerability. It is imperative to search for novel drugs to obtain better treatments. Sulforaphane (SFN), a derivative of glucoraphanin present in cruciferous vegetables, exhibits therapeutic effects on inflammation-related diseases. Since inflammation plays an important role in regulating chronic pain, in the present study, we investigated anti-nociceptive effects of SFN and its underlying mechanisms in a neuropathic pain mouse model, sciatic nerve chronic constriction injury (CCI). SFN (0.1-100 mg/kg) was injected intraperitoneally for 7 days when pain behaviors, including mechanical allodynia and thermal hyperalgesia, reached to the maximum in CCI mice. We observed that SFN dose-dependently attenuated CCI-induced pain behavioral hypersensitivity, accompanied by reduction in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and upregulation of an anti-inflammatory cytokine (IL-10). Moreover, SFN counteracted CCI enhancement of COX2 and iNOS in injured nerves, two key enzymes implicated in inflammation and neuropathic pain. Furthermore, pretreatment of naloxone, an antagonist of opioid receptors, significantly blocked SFN attenuation of behavioral hypersensitivity without affecting SFN modulation of inflammatory cytokines in CCI mice. Interestingly, CCI-induced increase in µ-opioid receptors in injured sciatic nerves was further increased by SFN treatment. Taken together, SFN has both anti-nociceptive and anti-inflammatory actions.
In the organ or Corti, oxidative stress could result in damage to the hearing, and neural stem cells (NSCs) hold great therapeutic potential in treating hearing loss. Ginkgo biloba extract (GBE) has been widely shown to exhibit anti-oxidative and anti-apoptotic effects in treatments of neural damage and disorder. Using hydrogen peroxide to induced oxidative stress as a model, we investigated the anti-oxidative role of GBE in isolated mouse cochlear NSCs. GBE treatment was found to significantly promote viability of NSCs, by markedly attenuating hydrogen peroxide induced oxidative stress. In addition, this anti-oxidative function of GBE was also able to prevent mitochondrial depolarization and subsequent apoptosis. Moreover, the anti-apoptotic role of GBE was mediated by antagonizing the intrinsic mitochondrial apoptotic pathway, where GBE could reverse the changes in key intrinsic apoptosis pathway factors including Bcl-2, Bax, and Caspase-3. Our data provided the first report on the beneficial role of GBE in protecting cochlear NSCs, by attenuating oxidative stress triggered intrinsic apoptosis, therefore supporting the potential therapeutic value of GBE in preventing oxidative stress-related hearing loss. Copyright © 2016 John Wiley & Sons, Ltd.
Nerve growth factor (NGF) is a neurotrophic factor that modulates survival and differentiation of neural stem cells (NSCs). We investigated the function of NGF in promoting growth and neuronal differentiation of NSCs isolated from mouse cochlear tissue, as well as its protective properties against gentamicin (GMC) ototoxicity. NSCs were isolated from the cochlea of mice and cultured in vitro. Effect of NGF on survival, neurosphere formation, and differentiation of the NSCs, as well as neurite outgrowth and neural excitability in the subsequent in vitro neuronal network, was examined. Mechanotransduction capacity of intact cochlea and auditory brainstem response (ABR) threshold in mice were also measured following GMC treatment to evaluate protection using NGF against GMC-induced neuronal hearing loss. NGF improved survival, neurosphere formation, and neuronal differentiation of mouse cochlear NSCs in vitro, as well as promoted neurite outgrowth and neural excitability in the NSC-differentiated neuronal culture. In addition, NGF protected mechanotransduction capacity and restored ABR threshold in gentamicin ototoxicity mouse model. Our study supports a potential therapeutic value of NGF in promoting proliferation and differentiation of NSCs into functional neurons in vitro, supporting its protective role in the treatment of neuronal hearing loss.
Ginkgo biloba extract (GBE) has been widely used for treatment of neural damage and disorders. Neural stem cells (NSCs) hold promise as a treatment of hearing loss caused by neural damage. However, the biological functions of GBE in modulating NSC behaviors in the cochlea are still largely elusive. In this study, we sought to explore the effects of GBE on the differentiation and performance of NSCs from mouse cochlea. Our data showed that GBE treatment promotes cell survival and NSC proliferation. In addition, GBE treatment also increases NSC differentiation to neurons and enhances the performance of mature neural networks evident by the increased frequency of calcium oscillation. Moreover, neurite outgrowth is also dramatically increased upon GBE treatment. Overall, our study demonstrates the positive regulatory role of GBE in NSC proliferation and differentiation into functional neurons in vitro, supporting the potential therapeutic use of GBE in hearing loss recovery.
Background: Destruction of melanocytes mediated by autoimmunity is currently believed as the main cause of vitiligo. This article aims to identify the role of CC chemokine ligand 17 (CCL17)-CC chemokine receptor 4 (CCR4) axis in vitiligo and provide new possibilities for the clinical treatment of vitiligo. Methods: A total of 30 patients with vitiligo from Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University were recruited based on the inclusion and exclusion criteria. Trephine was used to obtain skin samples from the lesion area and its surrounding normal areas, and the expression levels of CCL17, CCR4, Tbx21, Eomes, and Blimp1 were determined by quantitative reverse transcription polymerase chain reaction. Vitiligo mouse model was established by adoptively transferring CFP-PMEL CD8+ T cells into sublethally irradiated Krt14-Kitl* mice. Recipient mice received intraperitoneal injection of 1 × 10 6 plaque-forming units of rVV-hPMEL on the same day of transfer. The degree of depigmentation was scored blindly by one observer 5 weeks after vitiligo induction. CFP-PMEL CD8+ T cells migration to skin, draining lymph nodes, spleen, and blood were detected by flow cytometry. CCR4 blockade was performed by intraperitoneal injection of neutralizing antibody. Results:The expression levels of CCL17, CCR4, Tbx21, Eomes, and Blimp1 in skin lesions were significantly increased compared with that in surrounding normal areas. CCL17 −/− and CCR4 −/− mice exhibited significantly lower disease scores than WT mice. The CFP-PMEL CD8+ T cells accumulation was significantly decreased in the skin of CCL17 −/− and CCR4 −/− mice, but was not changed in draining lymph nodes, spleen, and blood. Administration of CCR4 neutralizing antibody decreased the degree of depigmentation and the recruitment of CFP-PMEL CD8+ T cells to the skin, while keeping the number of T cells in draining lymph nodes unchanged. Conclusion: Targeting CCL17-CCR4 axis might inhibit T cell migrating to skin and alleviate vitiligo progression. K E Y W O R D S CCL17, CCR4, CD8 + T cells, neutralizing antibody, vitiligoThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.