Background: The biosynthesis of high value-added compounds using metabolically engineered strains has received wide attention in recent years. Myo-inositol (inositol), an important compound in the pharmaceutics, cosmetics and food industries, is usually produced from phytate via a harsh set of chemical reactions. Recombinant Escherichia coli strains have been constructed by metabolic engineering strategies to produce inositol, but with a low yield. The proper distribution of carbon flux between cell growth and inositol production is a major challenge for constructing an efficient inositol-synthesis pathway in bacteria. Construction of metabolically engineered E. coli strains with high stoichiometric yield of inositol is desirable. Results: In the present study, we designed an inositol-synthesis pathway from glucose with a theoretical stoichiometric yield of 1 mol inositol/mol glucose. Recombinant E. coli strains with high stoichiometric yield (> 0.7 mol inositol/mol glucose) were obtained. Inositol was successfully biosynthesized after introducing two crucial enzymes: inositol-3-phosphate synthase (IPS) from Trypanosoma brucei, and inositol monophosphatase (IMP) from E. coli. Based on starting strains E. coli BW25113 (wild-type) and SG104 (ΔptsG::glk, ΔgalR::zglf, ΔpoxB::acs), a series of engineered strains for inositol production was constructed by deleting the key genes pgi, pfkA and pykF. Plasmid-based expression systems for IPS and IMP were optimized, and expression of the gene zwf was regulated to enhance the stoichiometric yield of inositol. The highest stoichiometric yield (0.96 mol inositol/mol glucose) was achieved from recombinant strain R15 (SG104, Δpgi, Δpgm, and RBSL5-zwf). Strain R04 (SG104 and Δpgi) reached high-density in a 1-L fermenter when using glucose and glycerol as a mixed carbon source. In scaled-up fed-batch bioconversion in situ using strain R04, 0.82 mol inositol/mol glucose was produced within 23 h, corresponding to a titer of 106.3 g/L (590.5 mM) inositol. Conclusions: The biosynthesis of inositol from glucose in recombinant E. coli was optimized by metabolic engineering strategies. The metabolically engineered E. coli strains represent a promising method for future inositol production. This study provides an essential reference to obtain a suitable distribution of carbon flux between glycolysis and inositol synthesis.
Background The biosynthesis of high value-added compounds through metabolically engineered strains has received widely attention in recent years. As an effective compound in pharmaceutical, cosmetic and food industry, myo-inositol (inositol) is mainly produced via a harsh set of chemical reactions from phytate. The proper distribution of carbon flux between cell growth and inositol production was a major challenge for constructing an efficient inositol-synthetic pathway. Recombinant E. coli strains have been constructed by metabolic engineering strategies to produce inositol, yet with a low yield. Therefore, construction of E. coli metabolically engineered strains with high stoichiometric yield will be attractive. Results In the present study, the recombinant E. coli strains with high stoichiometric yield (> 0.7 mol inositol/mol glucose) were obtained to efficiently synthesize inositol. Inositol was successfully biosynthesized after introducing two crucial enzymes, inositol-3-phosphate synthase (IPS) from Trypanosoma brucei , and inositol monophosphatase (IMP) from E. coli. Based on starting strains E. coli BW25113 (wild type) and SG104 ( ΔptsG::glk , ΔgalR::zglf , ΔpoxB::acs ), a series of engineered strains for inositol production were constructed by deleting the key genes pgi, pfkA or pykF . Furthermore, the plasmid expression systems of IPS and IMP were optimized, and the gene zwf was regulated to enhance stoichiometric yield. The highest stoichiometric yield (0.96 mol inositol/mol glucose) was achieved with the combined strain R15 of SG104, Δpgi , Δpgm , and RBSL5-zwf. Simultaneously, the engineered strain R04 reached high-density fermentation level in a 1-L fermenter by using glucose and glycerol as mixed carbon source. In the scale-up bioconversion in situ with R04, 0.82 mol inositol/mol glucose was produced by fed-batch within 23 h, corresponding to a titer of 106.3 g/L (590.5 mM). Conclusions The biosynthetic pathway of inositol from glucose in recombinant E. coli was optimized by metabolic engineering strategies. The metabolically engineered E. coli strains represent a promising method for future inositol production. This study provided an essential reference to obtain a suitable distribution of carbon flux between glycolysis pathway and product synthetic pathway.
Background: The biosynthesis of high value-added compounds using metabolically engineered strains has received wide attention in recent years. Myo-inositol (inositol), an important compound in the pharmaceutics, cosmetics and food industries, is usually produced from phytate via a harsh set of chemical reactions. Recombinant Escherichia coli strains have been constructed by metabolic engineering strategies to produce inositol, but with a low yield. The proper distribution of carbon flux between cell growth and inositol production is a major challenge for constructing an efficient inositol-synthesis pathway in bacteria. Construction of metabolically engineered E. coli strains with high stoichiometric yield of inositol is desirable.Results: In the present study, we designed an inositol-synthesis pathway from glucose with a theoretical stoichiometric yield of 1 mol inositol/mol glucose. Recombinant E. coli strains with high stoichiometric yield (>0.7 mol inositol/mol glucose) were obtained. Inositol was successfully biosynthesized after introducing two crucial enzymes: inositol-3-phosphate synthase (IPS) from Trypanosoma brucei, and inositol monophosphatase (IMP) from E. coli. Based on starting strains E. coli BW25113 (wild-type) and SG104 (ΔptsG::glk, ΔgalR::zglf, ΔpoxB::acs), a series of engineered strains for inositol production was constructed by deleting the key genes pgi, pfkA and pykF. Plasmid-based expression systems for IPS and IMP were optimized, and expression of the gene zwf was regulated to enhance the stoichiometric yield of inositol. The highest stoichiometric yield (0.96 mol inositol/mol glucose) was achieved from recombinant strain R15 (SG104, Δpgi, Δpgm, and RBSL5-zwf). Strain R04 (SG104 and Δpgi) reached high-density in a 1-L fermenter when using glucose and glycerol as a mixed carbon source. In scaled-up fed-batch bioconversion in situ using strain R04, 0.82 mol inositol/mol glucose was produced within 23 h, corresponding to a titer of 106.3 g/L (590.5 mM) inositol.Conclusions: The biosynthesis of inositol from glucose in recombinant E. coli was optimized by metabolic engineering strategies. The metabolically engineered E. coli strains represent a promising method for future inositol production. This study provides an essential reference to obtain a suitable distribution of carbon flux between glycolysis and inositol synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.