Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regeneration, regulating gene expression especially via Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. Small interfering RNA knockdown or retroviral‐mediated expression of wild‐type human or constitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a function shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while muscle growth was mildly affected in Taz (gene Wwtr1 –/–) knockout mice, there were no overt effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre‐ERT2/+: Yapfl°x/fl°x:Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some genes independently of YAP, including myogenic genes such as Pax7, Myf5, and Myod1 (ArrayExpress–E‐MTAB‐5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in myogenesis and aspects of cytoskeleton organization (ProteomeXchange–PXD005751). Neither TAZ nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt and Wnt‐cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in promoting myoblast proliferation but Taz then switches to enhance myogenic differentiation. Stem Cells 2017;35:1958–1972
VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1 ) and TAZ (encoded by WWTR1 ). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5 , Pitx2 and Pitx3 , and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3 -null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis.
Mammalian extra-embryonic lineages perform the crucial role of nutrient provision during gestation to support embryonic and fetal growth. These lineages derive from outer trophectoderm (TE) and internal primitive endoderm (PE) in the blastocyst and subsequently give rise to chorio-allantoic and visceral yolk sac placentae, respectively. We have shown maternal low protein diet exclusively during mouse preimplantation development (Emb-LPD) is sufficient to cause a compensatory increase in fetal and perinatal growth that correlates positively with increased adult-onset cardiovascular, metabolic and behavioural disease. Here, to investigate early mechanisms of compensatory nutrient provision, we assessed the influence of maternal Emb-LPD on endocytosis within extraembryonic lineages using quantitative imaging and expression of markers and proteins involved. Blastocysts collected from Emb-LPD mothers within standard culture medium displayed enhanced TE endocytosis compared with embryos from control mothers with respect to the number and collective volume per cell of vesicles with endocytosed ligand and fluid and lysosomes, plus protein expression of megalin (Lrp2) LDL-family receptor. Endocytosis was also stimulated using similar criteria in the outer PE-like lineage of embryoid bodies formed from embryonic stem cell lines generated from Emb-LPD blastocysts. Using an in vitro model replicating the depleted amino acid (AA) composition found within the Emb-LPD uterine luminal fluid, we show TE endocytosis response is activated through reduced branched-chain AAs (leucine, isoleucine, valine). Moreover, activation appears mediated through RhoA GTPase signalling. Our data indicate early embryos regulate and stabilise endocytosis as a mechanism to compensate for poor maternal nutrient provision.
Muscular dystrophies are a group of genetic muscle disorders that cause progressive muscle weakness and degeneration. Within this group, Duchenne muscular dystrophy (DMD) is the most common and one of the most severe. DMD is an X chromosome linked disease that occurs to 1 in 3,500 to 1 in 5,000 boys. The cause of DMD is a mutation in the dystrophin gene, whose encoded protein provides both structural support and cell signaling capabilities. So far, there are very limited therapeutic options available and there is no cure for this disease. In this review, we discuss the existing cell therapy research, especially stem cell-based, which utilize myoblasts, satellite cells, bone marrow cells, mesoangioblasts and CD133+ cells. Finally, we focus on human pluripotent stem cells (hPSCs) which hold great potential in treating DMD. hPSCs can be used for autologous transplantation after being specified to a myogenic lineage. Over the last few years, there has been a rapid development of isolation, as well as differentiation, techniques in order to achieve effective transplantation results of myogenic cells specified from hPSCs. In this review, we summarize the current methods of hPSCs myogenic commitment/differentiation, and describe the current status of hPSC-derived myogenic cell transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.