Notch signaling pathway has been shown to play essential roles in T lymphocyte development. Activation of Notch requires a sequential proteolytic cleavage, which converts Notch from the full-length membrane-bound form to a transcriptionally active intracellular fragment. Studies in Drosophila showed that Kuzbanian (Kuz) is responsible for the enzymatic cleavage of extracellular S2 site upon Notch binding to its ligand Delta. Both a disintegrin and metalloprotease (ADAM) 10 and ADAM17, members of the ADAM family metalloproteases, have been indicated as the mammalian counterpart of Kuz in activating Notch in mammals. Here, we investigated functions of ADAM10 in Notch signaling during thymocyte development. We show that conditional disruption of the Adam10 gene in mouse thymocytes results in a developmental defect similar to the phenotypes previously described for T lineage-specific disruption of Notch1. We further show that the activation of Notch1 and its downstream target genes Deltex-1 and Pre-Ta are impaired in Adam10-deficient thymocytes. Our study demonstrates a T cell intrinsic role for Adam10 in activation of Notch1 during thymocyte development.
Mutations in lysosomal-associated membrane protein 2 (LAMP-2) gene are associated with Danon disease, which often leads to cardiomyopathy/heart failure through poorly defined mechanisms. Here, we identify the LAMP-2 isoform B (LAMP-2B) as required for autophagosome–lysosome fusion in human cardiomyocytes (CMs). Remarkably, LAMP-2B functions independently of syntaxin 17 (STX17), a protein that is essential for autophagosome–lysosome fusion in non-CMs. Instead, LAMP-2B interacts with autophagy related 14 (ATG14) and vesicle-associated membrane protein 8 (VAMP8) through its C-terminal coiled coil domain (CCD) to promote autophagic fusion. CMs derived from induced pluripotent stem cells (hiPSC-CMs) from Danon patients exhibit decreased colocalization between ATG14 and VAMP8, profound defects in autophagic fusion, as well as mitochondrial and contractile abnormalities. This phenotype was recapitulated by LAMP-2B knockout in non-Danon hiPSC-CMs. Finally, gene correction of LAMP-2 mutation rescues the Danon phenotype. These findings reveal a STX17-independent autophagic fusion mechanism in human CMs, providing an explanation for cardiomyopathy in Danon patients and a foundation for targeting defective LAMP-2B–mediated autophagy to treat this patient population.
Animals alter their reproductive programs to accommodate changes in nutrient availability, yet the connections between known nutrient-sensing systems and reproductive programs are underexplored, and whether there is a mechanism that senses nucleotide levels to coordinate germline proliferation is unknown. We established a model system in which nucleotide metabolism is perturbed in both the nematode Caenorhabditis elegans (cytidine deaminases) and its food (Escherichia coli); when fed food with a low uridine/thymidine (U/T) level, germline proliferation is arrested. We provide evidence that this impact of U/T level on the germline is critically mediated by GLP-1/Notch and MPK-1/MAPK, known to regulate germline mitotic proliferation. This germline defect is suppressed by hyperactivation of glp-1 or disruption of genes downstream from glp-1 to promote meiosis but not by activation of the IIS or TORC1 pathways. Moreover, GLP-1 expression is post-transcriptionally modulated by U/T levels. Our results reveal a previously unknown nucleotide-sensing mechanism for controlling reproductivity.
Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders RasV12 cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the RasV12 cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.
Notch pathway has been demonstrated to regulate cardiovascular development. One important step in Notch pathway is the cleavage of Notch receptor, during which an intracellular fragment of Notch protein is released to activate downstream genes. It is still uncertain whether Adam10, the mammalian homologue of Kuzbanian in Drosophila, is required to activate the Notch pathway during cardiovascular development. To further understand the physiological function of Adam10 in vascular and cardiac development, we generated mice lacking the Adam10 gene primarily in the endothelial compartment. We found that disruption of Adam10 in endothelial cells resulted in embryonic death after embryonic day 10.5 due to multiple cardiac and vascular defects similar to Notch1 mutants. We further showed that the expression of Notch target genes Snail and Bmp2 are impaired in Adam10‐deficient cardiac tissues. Finally, we provide experimental evidence to support that Adam10 functions in a cell autonomous manner during mammalian cardiac development. Developmental Dynamics 239:2594–2602, 2010. © 2010 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.