Land surface albedo is a critical variable in determining surface energy balance, and regulating climate and ecosystem processes through feedback mechanisms. Therefore, climatic modelers and radiative monitoring require accurate estimates of land surface albedo. With the instrument development, algorithm upgrade, spectral-band-adjustment in wavelength center or band width, and the increasing distinct requirement from diversified communities, various albedo terms have been generated in related satellite-based products. The lack of understanding on the divergence of these terminologies can introduce potential considerable errors in the subsequent applications, or an elevated probability to invert the deduced conclusion. We surveyed the basic concepts of reflectance quantities, retrieval strategies, and models developed since the 1970s, and discuss both strength and opportunity for improvements on land surface albedo extraction, and product generation. In addition, we exemplified the difference of albedo terms using the daily MODIS product (MCD43A) to emphasize the potential risk of the ambiguous usage, over typical IGBP land covers in Northern Kazakhstan. Our investigation shows that relative differences among various albedo terms can reach up to 181% and 50%, while 0.266 and 0.118 of absolute variance respectively in the narrow and broad-band surface albedo, which illuminated cautions against the ambiguous understanding of albedo terminologies or erroneous usage of albedo products.
Optical remote sensing indices play an important role in vegetation information extraction and have been widely serving ecology, agriculture and forestry, urban monitoring, and other communities. Remote sensing indices are constructed from individual bands depending on special characteristics to enhance the typical spectral features for the identification or distinction of surface land covers. With the development of quantitative remote sensing, there is a rapidly increasing requirement for accurate data processing and modeling. It is well known that the geometry-induced variation observed on surface reflectance is not ignorable, but the situation of uncertainty thereby introduced into these indices still needs further detailed understanding. We adopted the ground multi-angle hyperspectrum, spectral response function (SRF) of Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+), Operational Land Imager (OLI), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multi-Spectral Instrument (MSI) optical sensors and simulated their sensor-like spectral reflectance; then, we investigated the potential angle effect uncertainty on optical indices that have been frequently involved in vegetation monitoring and examined the forward/backward effect over both the ground-based level and the actual Landsat TM/ETM+ overlapped region. Our results on the discussed indices and sensors show the following: (1) Identifiable angle effects exist with a more elevated influence than that introduced by band difference among sensors; (2) The absolute difference of forward and backward direction can reach up to -0.03 to 0.1 within bands of the TM/ETM+ overlapped region; (3) The investigation at ground level indicates that there are different variations of angle effect transmitted to each remote sensing index. Regarding cases of crop canopy at various growth phases, most of the discussed indices have more than a 20% relative difference in nadir value except Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI), at less than 10%, and Normalized Burn Ratio (NBR) at less than 16%. For the case of wax maturity stage, the relative difference in nadir value of Enhanced Vegetation Index (EVI), Soil-Adjusted Vegetation Index (SAVI), Ratio Vegetation Index (RVI), Char Soil Index (CSI), NBR, Normalized Difference Moisture Index (NDMI), and SWIR2/NIR exceeded 50%, among which the values for NBR and NDMI reached up to 115.8% and 206.7%, respectively; (4) Various schemes of index construction imply different developments of angle effect uncertainty. The “difference” indices can partially suppress the directional influence, while the “ratio” indices show high potential to amplify the angle effect. This study reveals that the angle-induced uncertainty of these indices is greater than that induced by the spectrum mismatch among sensors, especially under the senescence period. In addition, based on this work, indices with a suppressed potential of angle effect are recommended for vegetation monitoring or information retrieval to avoid unexpected effects.
Surface albedo, as an important parameter for land surface geo-biophysical and geo-biochemical processes, has been widely used in the research communities involved in surface energy balance, weather forecasting, atmospheric circulation, and land surface process models. In recent years, operational products using satellite-based surface albedo have, from time to time, been rapidly developed, contributing significantly to the estimation of energy balance at regional or global scales. The increasing number of research topics on dynamic monitoring at a decades-long scale requires a combination of albedo products generated from various sensors or programs, while the quantitative assessment of agreement or divergence among different surface albedo products still needs further understanding. In this paper, we investigated the consistency of three classical operational surface albedo products that have been frequently used by researchers globally via the official issued datasets-MODIS, GLASS (Global LAnd Surface Satellite), and CGLS (Copernicus Global Land Service). The cross-comparison was performed on all the identical dates available during 2000–2017 to represent four season-phases. We investigated the pixel-based validity of each product, consistency of global annual mean, spatial distribution and different temporal dynamics among the discussed products in white-sky (WSA) and black-sky (BSA) albedo at visible (VIS), near-infrared (NIR), and shortwave (SW) regimes. Further, varying features along with the change of seasons was also examined. In addition, the variation in accuracy of shortwave albedo magnitude was explored using ground measurements collected by the Baseline Surface Radiation Network (BSRN) and the Surface Radiation Budget Network (SUFRAD). Results show that: (1) All three products can provide valid long-term albedo for dominant land surface, while GLASS can provide additional estimation over sea surfaces, with the highest percentage of valid land surface pixels, at up to 93% in 24 October. The invalid pixels mainly existed in the 50°N–60°N latitude belt in December for GLASS, Central Africa in April and August for MODIS, and northern high latitudes for CGLS. (2) The global mean albedo of CGLS at the investigated bands has significantly higher values than those of MODIS and GLASS, with a relative difference of ~20% among the three products. The global mean albedo of MODIS and GLASS show a generally increasing trend from April to December, with an abrupt rise at NIR and SW of CGLS in June of 2014. Compared with SW and VIS bands, the linear temporal trend of the NIR global albedo mean in three products continues to increase, but the slope of CGLS is 10–100 times greater than that of the other two products. (3) The differences in albedo, which are higher in April, October, and December than in August, exhibit a small variation over the main global land surface regions, except for Central Eurasia, North Africa, and middle North America. The magnitude of global absolute difference among the three products usually varies within 0.02–0.06, but with the largest value occasionally exceeding 0.1. The relative difference is mainly within 10–20%, and can deviate more than 40% away from the baseline. In addition, CGLS has a greater opportunity to achieve the largest difference compared with MODIS and GLASS. (4) The comparison with ground measurements indicates that MODIS generally performs better than GLASS and CGLS at the sites discussed. This study demonstrates that apparent differences exist among the three investigated albedo products due to the ingested source data, algorithm, atmosphere correction etc., and also points at caution regarding data fusion when multiple albedo products were organized to serve the following applications.
Evapotranspiration (ET), as a key eco-hydrological parameter, plays an important role in understanding sustainable ecosystem development. Each plant category has a unique functional trait on transpiration and photosynthesis, with ET implying that water cycle and energy transformation is linked with vegetation type. Changes in surface vegetation directly alter biophysical land surface properties, hence affecting energy and ET transfer. With the rapid increase in land surface changes, there is a need to further understand and quantify the effects of vegetation change on ET, especially over the vulnerable water-cycle region in the arid and semi-arid regions of Northwest China. We adopted the GlobalLand30 land cover and MOD16A2 in 2010 and 2020 to investigate, discuss the spatio-temporal characteristics of annual and seasonal ET of cultivated land, grassland, and forests in Northwest China, and quantify the impact on vegetation changes with absolute and relative changes from different climatic subecoregions on ET. Our results show the following: (1) Forest ET was generally the highest at 688 mm, followed by cultivated land and grassland with 200–400 mm in arid climatic subecoregions. (2) Returning cultivated land to forests and cultivated land expansion potentially enhances ET by 90–110 mm/10a, with the relative rate of change increasing by 22.1% and 45.8%, respectively, away from unchanged vegetation within identical subecoregions. (3) The ET of most investigated areas gains the highest value in summer, followed by spring, autumn, and winter. This study provides reference for sustainable ecosystem development and the reasonable utilization of limited water resources in Northwest China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.