Discrete choice modeling of travel modes is an essential part of traffic planning and management. Thus far, this field has been dominated by multinomial logit (MNL) models with a linear utility specification. However, deep neural networks (DNNs), owing to their powerful capacity of nonlinear fitting, are now rapidly replacing these models. This is because, by using DNNs, mode choice can be assimilated with the classification problems within the machine learning community. This article proposes a newly designed DNN framework for traffic mode choice in the style of two hidden layers. First, a local-connected layer automatically extracts an effective utility specification from the available data, and then, a fully connected layer augments the feature representation. Validated by a practical city-wide multimodal traffic dataset in Beijing, our model significantly outperforms the random utility models and simple fully connected neural network in terms of the prediction accuracy. Besides the comparison of the predictive power, we also present the interpretability of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.