Although there is no risk of puncture, the vibration problem caused by discontinuous structures limits nonpneumatic tire development (NPT). The vibration reduction of nonpneumatic tires is a solvable urgent problem. This current study analyzed the dynamic grounding characteristics and the vibration reduction mechanism of the cat’s paw pads and then applied the mechanical properties to the bionic design of nonpneumatic tire spokes to solve the vibration problem. Domestic cats’ paw pads’ dynamic grounding characteristics were determined using the pressure-sensitive walkway, high-speed camera, and VIC-2D. The results indicated that the mechanical characteristics of swing deformation of paw pads during the grounding process attenuated the grounding stress and buffered the energy storage to achieve the vibration reduction effect. According to the similarity transformation, a finite element model of NPT that could accurately reconstruct the structure and realistically reflect the load deformation was employed. The structure design of asymmetric arcs on the spokes’ side edges was proposed, and it can effectively reduce the radial excitation force of NPT. The three parameters, the asymmetric arc, the thickness, and the curvature of spokes, were used as design variables to maximize the vibration reduction. The orthogonal experimental, the Kriging approximate model, and the genetic algorithm were carefully selected for optimal solutions. Compared with the original tire, the results showed that peak amplitude 1, peak amplitude 2, and the root square of the optimized tire’s amplitudes were reduced by 76.07%, 52.88%, and 51.65%, respectively. These research results offer great potential guidance in the design of low-vibration NPT.
The grip force of tires is crucial for vehicle security and drivability under different driving conditions. A small contact area and stress concentration in the contact patch of two-wheeled motorcycle (TWM) tires result in a reduction in grip performance and wear resistance. Even worse, improving the grip and wear resistance together is difficult to achieve. The purpose of the current study is to analyze the dynamic grounding characteristics and geometry of a cat paw pad and then apply its structure to the TWM tire to improve the contact area and wear resistance under different operating conditions. A nonlinear finite element tire model that could accurately reconstruct the tire structure and realistically reflect the mechanical response to different loads was employed. Then, the accuracy of the tire model was validated by a static test with a control tire. For cats, the dynamic grounding characteristics and topology of paw pads were determined using a pressure-sensitive walkway and a three-dimensional (3D) laser scanner. The results indicated that the cat forepaw third pad (CFTP) exhibited excellent grip capacity. According to similarity transformation, a bionic tire crown was designed according to the lateral fitting curve of the CFTP. Comparative results showed the enlargement of the contact area and decreases in peak pressure and frictional energy rate for the bionic tire under different conditions. With these improvements, the grip performance was improved, and the service life was extended synchronously. These research results can be applied for the design of TWM tires, especially cross-country motorcycle tires.
Ground reaction force and impulse measurement is an established method for assessing the physical condition and efficacy of treatment for some animals. The primary aim of this study was to quantify the kinetic parameters of the limbs of healthy cats at different speeds. The second aim was to determine the explicit relationship between the kinetic parameters and speed. Peak vertical force (PVF), vertical impulse (VI), stance phase duration (SPD), and paw contact area (PCA) of each limb (forelimb, F; hindlimb, H) of seven clinically healthy, client-owned cats were recorded in the speed interval of 0.5–2.5 m/s. The cats were encouraged to pass by a pressure-sensitive walkway with different speeds. The results revealed that there were no significant differences in any of the tested parameters between the left and right forelimbs and the left and right hindlimbs. Means and regression formulas of the kinetic parameters with speed were obtained. It was evident that PVF-F and PVF-H increased linearly with speed, while VI-F and VI-H decreased exponentially. SPD-F was practically equal to SPD-H and exponentially decreased with speed. PCA-F increased linearly with speed, and PCA-H was almost invariable. Pressure-sensitive walkway is a suitable and convenient equipment for assessing the kinetic parameters of cats. Variation of these kinetic parameters with speed can be explained by the functional difference for forelimb-dominant and hindlimb-driven.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.