We have investigated the adsorption stability of ruthenium N749 dye [black dye (BD)], a highly efficient dye for dye-sensitized solar cells (DSCs), through protonated and deprotonated carboxyl group anchors on a TiO2 anatase (101) surface by using first-principles calculations. Geometry optimizations of the surface system with a supercell and the UV-visible spectrum calculation of the optimized dye structure were carried out. Among the configurations with one and two anchors, the BD adsorption anchored with one protonated carboxyl group was found to be the most stable, in contrast to most previous reports. Hydrogen bonding between the proton retained in BD and the surface oxygen is responsible for the stability of the protonated anchor. We confirmed that the calculated UV-visible spectrum of the most stable dye structure shows the best consistency with the experimental data. It is also demonstrated that the electronic density of states largely depends on the proton position. This novel aspect of adsorption via a protonated carboxyl anchor gives a new perspective for interfacial electronic processes of DSCs.
Electrodes in dye sensitised solar cells are typically nanocrystalline anatase TiO2 with a majority (1 0 1) surface exposed. Generally the sensitising dye employs a carboxylic anchoring moiety through which it adheres to the TiO₂ surface. Recent interest in exploiting the properties of differing TiO₂ electrode morphologies, such as rutile nanorods exposing the (1 1 0) surface and anatase electrodes with high percentages of the (0 0 1) surface exposed, begs the question of whether this anchoring strategy is best, irrespective of the majority surface exposed. Here we address this question by presenting density functional theory calculations contrasting the binding properties of two promising anchoring groups, phosphonic acid and boronic acid, to that of carboxylic acid. Anchor-electrode interactions are studied for the prototypical anatase (1 0 1) surface, along with the anatase (0 0 1) and rutile (1 1 0) surfaces. Finally the effect of using these alternative anchoring groups to bind a typical coumarin dye (NKX-2311) to these TiO₂ substrates is examined. Significant differences in the binding properties are found depending on both the anchor and surface, illustrating that the choice of anchor is necessarily dependent upon the surface exposed in the electrode. In particular the boronic acid is found to show the potential to be an excellent anchor choice for electrodes exposing the anatase (0 0 1) surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.