Introduction: The phytochemical composition of plant material governs the bioactivity and potential health benefits as well as the outcomes and reproducibility of laboratory studies and clinical trials. Objective: The objective of this work was to develop an efficient method for the indepth characterisation of plant extracts and quantification of marker compounds that can be potentially used for subsequent product integrity studies. Centella asiatica (L.) Urb., an Ayurvedic herb with potential applications in enhancing mental health and cognitive function, was used as a case study. Methods: A quadrupole time-of-flight analyser in conjunction with an optimised high-performance liquid chromatography (HPLC) separation was used for in-depth untargeted fingerprinting and post-acquisition precursor ion quantification to determine levels of distinct phytochemicals in various C. asiatica extracts. Results: We demonstrate the utility of this workflow for the characterisation of extracts of C. asiatica. This integrated workflow allowed the identification or tentative identification of 117 compounds, chemically interconnected based on Tanimoto chemical similarity, and the accurate quantification of 24 phytochemicals commonly found in C. asiatica extracts. Conclusion: We report a phytochemical analysis method combining liquid chromatography, high resolution mass spectral data acquisition, and post-acquisition interrogation that allows chemical fingerprints of botanicals to be obtained in conjunction with accurate quantification of distinct phytochemicals. The variability in the composition of specialised metabolites across different C. asiatica accessions was substantial, demonstrating that detailed characterisation of plant extracts is a
Mass filter operation in higher stability zones is known to provide better resolution. Unfortunately, for sine driven instruments, higher stability zone operation reduces the accessible mass range and increases the degenerative effects of fringe fields. Conversely, digitally driven mass filters do not suffer from loss of mass range, and the fringe field effects do not increase significantly by switching stability zones because the AC voltage is always constant and the DC voltage is always zero. This work catalogues 12 stability zones that are accessible with the new digital waveform generation technology. These zones have theoretical baseline resolving powers that range from 22 to 1 300 000 with pseudopotential well depths that range from 3.5 to 43 V. Operation in higher stability zones also has the advantage of aligned axial stability wells. That alignment maximizes the pseudopotential well depth for each higher stability zone, making them more than an order of magnitude greater than the standard ∼0.2 V well of a sine filter operating in the first stability zone at unit resolution. Increased pseudopotential well depth correlates with better ion transmission and sensitivity. Our theoretical examination suggests that the digital mass filter can obtain both high resolution and high sensitivity with essentially unlimited mass range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.