A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field Mössbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.
A series of bimetallic complexes pairing zero-valent nickel with group 13 M(III) ions is reported. Stronger Ni→M(III) dative bonds that render Ni more electron-deficient are seen for larger ions (In > Ga > Al). The larger Ga and In ions stabilize rare, nonclassical Ni-H2 adducts that catalyze olefin hydrogenation. In contrast, neither the Ni-Al complex nor a single nickel center enables H2 binding or olefin hydrogenation. By comparison of the structures, redox properties, and catalytic activities of the Ni-M series, the electronic and steric effects of the supporting metal ion are elucidated.
Metal organic frameworks (MOFs), with their crystalline, porous structures, can be synthesized to incorporate a wide range of catalytically active metals in tailored surroundings. These materials have potential as catalysts for conversion of light alkanes, feedstocks available in large quantities from shale gas that are changing the economics of manufacturing commodity chemicals. Mononuclear high-spin (S = 2) Fe(II) sites situated in the nodes of the MOF MIL-100(Fe) convert propane via dehydrogenation, hydroxylation, and overoxidation pathways in reactions with the atomic oxidant N 2 O. Pair distribution function analysis, N 2 adsorption isotherms, X-ray diffraction patterns, and infrared and Raman spectra confirm the single-phase crystallinity and stability of MIL-100(Fe) under reaction conditions (523 K in vacuo, 378−408 K C 3 H 8 + N 2 O). Density functional theory (DFT) calculations illustrate a reaction mechanism for the formation of 2-propanol, propylene, and 1-propanol involving the oxidation of Fe(II) to Fe(III) via a high-spin Fe(IV)O intermediate. The speciation of Fe(II) and Fe(III) in the nodes and their dynamic interchange was characterized by in situ X-ray absorption spectroscopy and ex situ Mossbauer spectroscopy. The catalytic relevance of Fe(II) sites and the number of such sites were determined using in situ chemical titrations with NO. N 2 and C 3 H 6 production rates were found to be first-order in N 2 O partial pressure and zero-order in C 3 H 8 partial pressure, consistent with DFT calculations that predict the reaction of Fe(II) with N 2 O to be rate determining. DFT calculations using a broken symmetry method show that Fe-trimer nodes affecting reaction contain antiferromagnetically coupled iron species, and highlight the importance of stabilizing high-spin (S = 2) Fe(II) species for effecting alkane oxidation at low temperatures (<408 K).
Coordination complexes that pair a zero-valent transition metal (Ni, Co, Fe) and an aluminum(III) center have been prepared. They add to the few examples of structurally characterized metal alanes and are the first reported metallalumatranes. To understand the M-Al interaction and gauge the effect of varying the late metal, the complexes were characterized by X-ray crystallography, electrochemistry, UV-Vis-NIR and NMR spectroscopies, and theoretical calculations. The M-Al bond strength decreases with varying M in the order Ni > Co > Fe.
Single non-heme Fe(II) ions present as structural moieties in several metal−organic frameworks (e.g., MIL-100, MIL-101, and MIL-808, where MIL indicates Materials of Institute Lavoisier) are identified by Kohn− Sham density functional calculations as promising catalysts for C−H bond activation, with energetic barriers as low as 40 kJ mol −1 for ethane and 60 kJ mol −1 for methane following the oxidative activation of iron. The ratedetermining step is the activation of N 2 O and has a barrier of 140 kJ mol −1 . Through consideration of the full reaction profile leading to the corresponding alcohols, ethanol and methanol, we have identified key changes in the chemical composition of the node that would modulate catalytic activity. The thermal and chemical stabilities of these materials, together with the scalability of their syntheses, make them attractive catalysts for the selective low-temperature conversion of light alkanes to higher-value oxygenates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.