Iron oxide nanoparticles have great potential as diagnostic and therapeutic agents in cancer and other diseases; however, biological aggregation severely limits their function in vivo. Aggregates can cause poor biodistribution, reduced heating capability, and can confound their visualization and quantification by magnetic resonance imaging (MRI). Herein, we demonstrate that the incorporation of a functionalized mesoporous silica shell can prevent aggregation and enable the practical use of high-heating, high-contrast iron oxide nanoparticles in vitro and in vivo. Unmodified and mesoporous silica-coated iron oxide nanoparticles were characterized in biologically relevant environments including phosphate buffered saline, simulated body fluid, whole mouse blood, lymph node carcinoma of prostate (LNCaP) cells, and after direct injection into LNCaP prostate cancer tumors in nude mice. Once coated, iron oxide nanoparticles maintained colloidal stability along with high heating and relaxivity behaviors (SARFe = 204 W/g Fe at 190 kHz and 20 kA/m and r1 = 6.9 mM(-1) s(-1) at 1.4 T). Colloidal stability and minimal nonspecific cell uptake allowed for effective heating in salt and agarose suspensions and strong signal enhancement in MR imaging in vivo. These results show that (1) aggregation can lower the heating and imaging performance of magnetic nanoparticles and (2) a coating of functionalized mesoporous silica can mitigate this issue, potentially improving clinical planning and practical use.
Diabetes worsens functional outcome and is associated with greater hemorrhagic transformation (HT) after ischemic stroke. We have shown that diabetic Goto-Kakizaki (GK) rats develop greater HT and neurological deficit despite smaller infarcts after transient middle cerebral artery occlusion (MCAO) with the suture model. However, the impact of 1) the duration of ischemia/reperfusion (I/R); 2) the method of ischemia; and 3) acute glycemic control on neurovascular injury and functional outcome in diabetic stroke remained unanswered. Wistar and GK rats were subjected to variable MCAO by suture or embolus occlusion. A group of GK rats were treated with insulin or metformin before stroke with suture occlusion. In all groups, infarct size, edema, HT occurrence and severity, and functional outcome were measured. Infarct size at 24 h was smaller in GK rats with both suture and embolic MCAO, but expanded with longer reperfusion period. Edema and HT were increased in GK rats after 90 min and 3 h occlusion with the suture model, but not in the embolic MCAO. Neurological deficit was greater in diabetic rats. These findings suggest that diabetes accelerates the development of HT and amplifies vascular damage in the suture model where blood flow is rapidly reestablished. Acute metformin treatment worsened the infarct size, HT, and behavior outcome, whereas insulin treatment showed a protective effect. These results suggest that the impact of ischemia/reperfusion on neurovascular injury and functional outcome especially in disease models needs to be fully characterized using different models of stroke to model the human condition.
Wood et al. show that α-catenin homodimers, but not monomers, selectively bind phosphatidylinositol-3,4,5-trisphosphate–containing vesicles with high affinity in vitro in a cadherin-independent manner and that cadherin-free α-catenin is recruited to the leading edge of migrating cells in a phosphatidylinositol 3-kinase–dependent manner to promote adhesion and migration.
Transthyretin (TTR) is a plasma protein that transports thyroid hormone and retinol binding protein-vitamin A complex. Eighty-four variants of TTR have been identified and seventy-four are associated with familial amyloidotic polyneuropathy. Normal TTR is the major protein found in the fibrillar deposits in the heart at time of autopsy of individuals with senile systemic amyloidosis. The mechanism by which normally soluble TTR deposits as organ-damaging, insoluble, pathological fibrils late in life is unknown. Understanding the mechanism of fibrillogenesis of normal TTR is critical to the design of clinical treatments aimed at retardation, prevention, or reversal of fibril deposition. We have employed a biophysical approach to explore the hypothesis that an instability in a particular secondary or tertiary structure plays a role in the ability of normal TTR to form fibrils at physiological pH. Using far UV circular dichroic (CD) spectroscopy as a function of temperature we have identified simultaneous, cooperative, reversible structural changes in the beta-sheet and alpha-helical regions. The flexible short, surface-located loops undergo an irreversible conformational change at a lower temperature. Spectra before and after heating are different, particularly in the wavelength region associated with these loops, strongly suggesting that the major portion of TTR returns to its initial conformation while the loops do not. Near UV CD reveals partially reversible and irreversible changes in tertiary structure. Using calorimetry to directly measure the enthalpy associated with these changes, two peaks are observed, with further analysis suggesting conformational intermediates. Precipitates from heated samples reveal pre-fibrillar morphology by negative stain electron microscopy. These biophysical studies suggest that heat-induced conformational rearrangements enable normal TTR to assemble into pre-fibrils at physiological pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.