SUMMARY cDNAs of putative glucose transporters, GLUT4 and GLUT2, were cloned from Atlantic cod (Gadus morhua). The GLUT4 cDNA encodes a 503 amino acid and the GLUT2 cDNA a 506 amino acid protein. Phylogenetic analysis, amino acid sequence alignment, and tissue distribution support categorizing them as homologues of mammalian GLUT4 and 2. GLUT4 clusters with GLUT4s from fish and other vertebrates. It shows 84% amino acid identity to GLUT4 from coho salmon and brown trout and 65% identity with other vertebrates. It is most highly expressed in heart, strongly expressed in red and white skeletal muscle and present at lower levels in gill, gonad, intestine, and kidney. GLUT2 clusters with GLUT2 from rainbow trout and other vertebrates. It shows 75% amino acid identity with rainbow trout and 62% identity with chicken GLUT2. In Atlantic cod, GLUT2 is most highly expressed in liver with lower levels noted in intestine and kidney. Food deprivation for 2 months was used as a vehicle to monitor GLUT expression at different blood glucose levels. Starvation resulted in a decrease in blood glucose and liver glycogen that recovered following 20 days of re-feeding. GLUT4 expression in heart was decreased with starvation and increased with re-feeding. GLUT4 mRNA level in heart correlated with blood glucose. It is suggested that this relationship is related to insulin responsiveness. GLUT4 expression in white muscle increased with starvation and decreased with re-feeding. It is proposed that this is due to the necessity to maintain high levels of the glucose transporter protein in the face of starvation-associated proteolysis. GLUT2 expression in liver correlated with blood glucose, consistent with higher rates of glucose transport from liver to blood in the fed state than in the food-deprived state. Glycerol-3-phosphate dehydrogenase (GPDH) cDNA was also cloned. It encodes a 351 amino acid protein, which is 73-90% identical to GPDH from numerous other fish species. GPDH is ubiquitously expressed. Expression in heart decreased with starvation and increased with refeeding, whereas expression in liver did not change with starvation. In other studies, gene expression was monitored at nine time points from fertilization of eggs to larval development. GLUT4 is detectable in fertilized eggs and is fully expressed by the halfway to hatching point. GLUT2 is not evident at fertilization, is detectable at halfway to hatching, and fully expressed at hatching. GPDH expression was evident from fertilization.
SUMMARY Rainbow smelt Osmerus modax accumulate glycerol in winter that serves as an antifreeze. Fish were held at 8°C, or subjected to a decrease in water temperature to –1°C over a 19 day period, and subsequently maintained at –1°C from 15 January to 11 May 2004. Starved fish did not survive the challenge of temperature decrease, with death ensuing above the typical freeze point for marine teleosts (–0.8°C). A decrease in temperature activates the glycerol accumulation mechanism at about 5°C with peak plasma levels exceeding 300 μmol ml–1. Glycerol levels begin to decrease in late February even at water temperatures below–1°C, suggesting either an inherent circannual or photoperiod trigger, possibly in association with sufficiently high levels of antifreeze protein. Glycogen levels in liver did not change significantly in starved fish maintained at 8°C. However, liver glycogen was depleted in fish subjected to the low-temperature challenge and at a faster rate in starved than in fed fish. Stored glycogen in liver and other tissues can account for only a small amount of the total glycerol production, suggesting a strong requirement for food during accelerated glycerol production. Liver glycogen levels increased in April and May in association with the decrease in glycerol. Levels of glycerol in liver, kidney, spleen, gill, intestine, heart, muscle and brain follow the same pattern as that in plasma. During the early part of the glycerol accumulation phase, all tissues except for liver have lower levels of glycerol in the intracellular space than the levels in plasma. In liver,glycerol is in equilibrium between the two compartments.
In winter, rainbow smelt (Osmerus mordax) accumulate glycerol and produce an antifreeze protein (AFP), which both contribute to freeze resistance. The role of differential gene expression in the seasonal pattern of these adaptations was investigated. First, cDNAs encoding smelt and Atlantic salmon (Salmo salar) phosphoenolpyruvate carboxykinase (PEPCK) and smelt glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were cloned so that all sequences required for expression analysis would be available. Using quantitative PCR, expression of beta actin in rainbow smelt liver was compared with that of GAPDH in order to determine its validity as a reference gene. Then, levels of glycerol-3-phosphate dehydrogenase (GPDH), PEPCK, and AFP relative to beta actin were measured in smelt liver over a fall-winter-spring interval. Levels of GPDH mRNA increased in the fall just before plasma glycerol accumulation, implying a driving role in glycerol synthesis. GPDH mRNA levels then declined during winter, well in advance of serum glycerol, suggesting the possibility of GPDH enzyme or glycerol conservation in smelt during the winter months. PEPCK mRNA levels rose in parallel with serum glycerol in the fall, consistent with an increasing requirement for amino acids as metabolic precursors, remained elevated for much of the winter, and then declined in advance of the decline in plasma glycerol. AFP mRNA was elevated at the onset of fall sampling in October and remained elevated until April, implying separate regulation from GPDH and PEPCK. Thus, winter freezing point depression in smelt appears to result from a seasonal cycle of GPDH gene expression, with an ensuing increase in the expression of PEPCK, and a similar but independent cycle of AFP gene expression.
SUMMARY Rainbow smelt (Osmerus mordax) accumulate high levels of glycerol in winter that serves as an antifreeze. Fish were subjected to controlled decreases in water temperature and levels of plasma glycerol, liver metabolites and liver enzymes were determined in order to identify control mechanisms for the initiation of glycerol synthesis. In two separate experiments, decreases in temperature from 8°C to 0°C over a period of 10–11 days resulted in increases in plasma glycerol from levels of less than 4 mmol l–1 to approximate mean levels of 40 (first experiment) and 150 mmol l–1 (second experiment). In a third experiment, decreases in temperature to –1°C resulted in plasma glycerol levels approaching 500 mmol l–1. The accumulation of glycerol could be driven in either December or March, thus eliminating decreasing photoperiod as a necessary cue for glycerol accumulation. Glycerol accumulation in plasma was associated with changes in metabolites in liver leading to increases in the mass action ratio across the reactions catalyzed by glycerol-3-phosphate dehydrogenase (GPDH) and glycerol-3-phosphatase(G3Pase). The maximal, in vitro activity of GPDH, increased twofold in association with a sharp increase in plasma glycerol level. The metabolite levels and enzyme activities provide complementary evidence that GPDH is a regulatory site in the low temperature triggered synthesis of glycerol. Indirect evidence, based on calculated rates of in vivo glycerol production by liver, suggests that G3Pase is a potential rate-limiting step. As well, transient increases in glyceraldehyde-3-phosphate dehydrogenase and alanine aminotransferase suggest that these sites are components of a suite of responses, in rainbow smelt liver, induced by low temperature.
14C]-glucose uptake in paddyfield eel (Monopterus albus), rainbow trout (Tse and Young, 1990) and carp (Tiihonen and Nikinmaa, 1991b). It appears that the presence or absence of facilitated glucose
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.