A common task in forensic anthropology involves the estimation of the ancestry of a decedent by comparing their skeletal morphology and measurements to skeletons of individuals from known geographic groups. However, the accuracy rates of ancestry estimation methods in actual forensic casework have rarely been studied. This article uses 99 forensic cases with identified skeletal remains to develop accuracy rates for ancestry estimations conducted by forensic anthropologists. The overall rate of correct ancestry estimation from these cases is 90.9%, which is comparable to most research-derived rates and those reported by individual practitioners. Statistical tests showed no significant difference in accuracy rates depending on examiner education level or on the estimated or identified ancestry. More recent cases showed a significantly higher accuracy rate. The incorporation of metric analyses into the ancestry estimate in these cases led to a higher accuracy rate.
The recognizability of facial images extracted from publically available medical scans raises patient privacy concerns. This study examined how accurately facial images extracted from computed tomography (CT) scans are objectively matched with corresponding photographs of the scanned individuals. The test subjects were 128 adult Americans ranging in age from 18 to 60 years, representing both sexes and three self-identified population (ancestral descent) groups (African, European, and Hispanic). Using facial recognition software, the 2D images of the extracted facial models were compared for matches against five differently sized photo galleries. Depending on the scanning protocol and gallery size, in 6-61 % of the cases, a correct life photo match for a CT-derived facial image was the top ranked image in the generated candidate lists, even when blind searching in excess of 100,000 images. In 31-91 % of the cases, a correct match was located within the top 50 images. Few significant differences (p > 0.05) in match rates were observed between the sexes or across the three age cohorts. Highly significant differences (p < 0.01) were, however, observed across the three ancestral cohorts and between the two CT scanning protocols. Results suggest that the probability of a match between a facial image extracted from a medical scan and a photograph of the individual is moderately high. The facial image data inherent in commonly employed medical imaging modalities may need to consider a potentially identifiable form of "comparable" facial imagery and protected as such under patient privacy legislation.
A common task in forensic anthropology involves the estimation of the biological sex of a decedent by exploiting the sexual dimorphism between males and females. Estimation methods are often based on analysis of skeletal collections of known sex and most include a research-based accuracy rate. However, the accuracy rates of sex estimation methods in actual forensic casework have rarely been studied. This article uses sex determinations based on DNA results from 360 forensic cases to develop accuracy rates for sex estimations conducted by forensic anthropologists. The overall rate of correct sex estimation from these cases is 94.7% with increasing accuracy rates as more skeletal material is available for analysis and as the education level and certification of the examiner increases. Nine of 19 incorrect assessments resulted from cases in which one skeletal element was available, suggesting that the use of an "undetermined" result may be more appropriate for these cases.
Decomposition studies utilizing nonhuman subjects as human analogues are well established, but fewer studies utilizing intact human remains exist. This study provides data from a controlled decomposition study involving human remains in Central Texas. A 63.5-kg unmodified cadaver was placed in an open-air site and observed over a 10-week period from April 11 through June 19, 2008. A wire enclosure restricted scavenger access. State of decomposition and environmental conditions were recorded daily for the first 36 days and then every 2 weeks thereafter. Results indicated a high degree of correlation with other decomposition studies originating in the southwestern United States, although slight deviations for the average duration of early events were noted. The data were also utilized to test a quantitative method for estimating the postmortem interval. Results indicated preliminary support for a quantitative approach. Additional research is encouraged to further establish the human decomposition data set for Central Texas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.