Background-Altered composition of the gut microbiota is involved in both the onset and progression of obesity and diabetes mellitus. However, the link between gut microbiota and obesity-related cardiovascular complications has not been explored. The present study was designed to investigate the role of Akkermansia muciniphila, a mucin-degrading bacterium with beneficial effects on metabolism, in the pathogenesis of atherosclerosis in apolipoprotein E-deficient (Apoe −/− ) mice. Methods and Results-Apoe−/− mice on normal chow diet or a Western diet were treated with A muciniphila by daily oral gavage for 8 weeks, followed by histological evaluations of atherosclerotic lesion in aorta. Real-time polymerase chain reaction analysis demonstrated that the fecal abundance of A muciniphila was significantly reduced by Western diet. Replenishment with A muciniphila reversed Western diet-induced exacerbation of atherosclerotic lesion formation without affecting hypercholesterolemia. A muciniphila prevented Western diet-induced inflammation in both the circulation and local atherosclerotic lesion, as evidenced by reduced macrophage infiltration and expression of proinflammatory cytokines and chemokines. These changes were accompanied by a marked attenuation in metabolic endotoxemia. A muciniphila-mediated reduction in circulating endotoxin level could be attributed to the induction of intestinal expression of the tight junction proteins (zona occuldens protein-1 and occludin), thereby reversing Western diet-induced increases in gut permeability. Long-term infusion of endotoxin to Apoe −/− mice reversed the protective effect of A muciniphila against atherosclerosis. Conclusion-A muciniphila Li et al Antiatherosclerotic Role of A muciniphila 2435into the circulation, resulting in metabolic endotoxemia, and the elevated endotoxins in circulation exacerbate hepatic insulin resistance and promote weight gain. 9 Although associations between alterations in gut microbiota and many chronic diseases have been observed, it remains unclear whether such changes are the cause or the consequence of the pathologies.Atherosclerosis, the main contributor to cardiovascular mortality, is a chronic inflammatory disease. 10 Bacterial infection has been proposed as one of the triggers of inflammation in atherosclerosis. 11,12 For example, Chlamydia pneumonia is present in atherosclerotic lesions of patients with previous exposure, and infection with this bacterium exacerbates atherosclerosis in animals. 11,12 Bacterial DNA has been detected in atherosclerotic lesions, and the pyrosequencing result reveals that the bacteria in lesions are derived from gut and oral cavity, 13 suggesting a possible involvement of gut microbiota in the development of the disease. However, the germ-free atherogenic mice lacking apolipoprotein E (Apoe −/ ) mice, which are without the colonization of gut microbiota, show a worsening of atherosclerotic lesions after being fed a high-cholesterol diet compared with the conventionally raised mice, and antibiotic ther...
The endoplasmic reticulum (ER) Unfolded Protein Response (UPR) restores equilibrium to the ER, but prolonged expression of the UPR effector CHOP (GADD153) is cytotoxic. We found that ER stress-induced CHOP expression was suppressed by prior engagement of toll-like receptor (TLR) 3 or 4 through a TRIF-dependent pathway. TLR engagement did not suppress phosphorylation of PERK or eIF-2α, which are upstream of CHOP, but phospho-eIF-2α failed to promote translation of the CHOP activator ATF4. In mice subjected to systemic ER stress, pre-treatment with low-dose lipopolysaccharide (LPS), a TLR4 ligand, suppressed CHOP expression and apoptosis in splenic macrophages, renal tubule cells, and hepatocytes, and prevented renal dysfunction and hepatosteatosis. This protective effect of LPS did not occur in Trif−/− mice nor in wild-type mice in which CHOP expression was genetically restored. Thus, TRIF-mediated signals from TLRs selectively attenuate translational activation of ATF4 and its downstream target gene CHOP. We speculate that this mechanism evolved to promote survival of TLR-expressing cells that experience prolonged levels of physiologic ER stress in the course of the host response to invading pathogens.
Macrophages play key roles in obesity-associated pathophysiology, including inflammation, atherosclerosis, and cancer, and processes that affect the survival-death balance of macrophages may have an important impact on obesity-related diseases. Adipocytes and other cells secrete a protein called extracellular nicotinamide phosphoribosyltransferase (eNampt; also known as pre-B cell colony enhancing factor or visfatin), and plasma levels of eNampt increase in obesity. Herein we tested the hypothesis that eNampt could promote cell survival in macrophages subjected to endoplasmic reticulum (ER) stress, a process associated with obesity and obesity-associated diseases. We show that eNampt potently blocks macrophage apoptosis induced by a number of ER stressors. The mechanism involves a two-step sequential process: rapid induction of interleukin 6 (IL-6) secretion, followed by IL-6-mediated autocrine/paracrine activation of the prosurvival signal transducer STAT3. The ability of eNampt to trigger this IL-6/STAT3 cell survival pathway did not depend on the presence of the Nampt enzymatic substrate nicotinamide in the medium, could not be mimicked by the Nampt enzymatic product nicotinamide mononucleotide (NMN), was not blocked by the Nampt enzyme inhibitor FK866, and showed no correlation with enzyme activity in a series of site-directed mutant Nampt proteins. Thus, eNampt protects macrophages from ER stress-induced apoptosis by activating an IL-6/STAT3 signaling pathway via a nonenzymatic mechanism. These data suggest a novel action and mechanism of eNampt that could affect the balance of macrophage survival and death in the setting of obesity, which in turn could play important roles in obesity-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.