Differences in the protein composition of fast- and slow-twitch muscle may be maintained by different rates of protein turnover. We investigated protein turnover rates in slow-twitch soleus and fast-twitch plantaris of male Wistar rats (body weight 412 ± 69 g). Animals were assigned to four groups (n = 3, in each), including a control group (0 d) and three groups that received deuterium oxide (D2O) for either 10 days, 20 days or 30 days. D2O administration was initiated by an intraperitoneal injection of 20 μL of 99% D2O-saline per g body weight, and maintained by provision of 4% (v/v) D2O in the drinking water available ad libitum. Soluble proteins from harvested muscles were analysed by liquid chromatography–tandem mass spectrometry and identified against the SwissProt database. The enrichment of D2O and rate constant (k) of protein synthesis was calculated from the abundance of peptide mass isotopomers. The fractional synthesis rate (FSR) of 44 proteins in soleus and 34 proteins in plantaris spanned from 0.58%/day (CO1A1: Collagen alpha-1 chain) to 5.40%/day NDRG2 (N-myc downstream-regulated gene 2 protein). Eight out of 18 proteins identified in both muscles had a different FSR in soleus than in plantaris (p < 0.05).
Introduction: Exercise offers protection from non-communicable diseases and extends healthspan by offsetting natural physiological declines that occur in older age. Striated muscle is the largest bodily organ; it underpins the capacity for physical work, and the responses of muscle to exercise convey the health benefits of a physically active lifestyle. Proteomic surveys of muscle provide a means to study the protective effects of exercise and this review summaries some key findings from literature listed in PubMed during the last 10 years that have led to new insight in muscle exercise physiology. Areas covered: 'Bottom-up' analyses involving liquid-chromatography tandem mass spectrometry (LC-MS/MS) of peptide digests have become the mainstay of proteomic studies and have been applied to muscle mitochondrial fractions. Enrichment techniques for post-translational modifications, including phosphorylation, acetylation and ubiquitination, have evolved and the analysis of site-specific modifications has become a major area of interest in exercise proteomics. Finally, we consider emergent techniques for dynamic analysis of muscle proteomes that offer new insight to protein turnover and the contributions of synthesis and degradation to changes in protein abundance in response to exercise training. Expert opinion: Burgeoning methods for dynamic proteome profiling offer new opportunities to study the mechanisms of muscle adaptation.
We examined muscle proteostasis in obese insulin-resistant (OIR) individuals to determine whether endurance exercise could positively influence proteome dynamics in this population. Male OIR (n = 3) and lean, healthy controls (LHC; n = 4) were recruited and underwent a 14-d measurement protocol of daily deuterium oxide (D2O) consumption and serial biopsies of vastus lateralis muscle. The OIR group then completed 10-weeks of high-intensity interval training (HIIT), encompassing 3 sessions per week of cycle ergometer exercise with 1 min intervals at 100 % maximum aerobic power (Wmax) interspersed by 1 min recovery periods. The number of intervals per session progressed from 4 to 8, and during weeks 8-10 the 14-d measurement protocol was repeated. The abundance and turnover rates of 880 and 301 proteins, respectively, were measured. OIR and LHC muscle exhibited 352 differences (p < 0.05, false discovery rate < 5%) in protein abundance and 19 (p < 0.05) differences in protein turnover. OIR muscle was enriched with markers of metabolic stress, protein misfolding and components of the ubiquitin-proteasome system, and the turnover rate of many of these proteins was less compared to LHC muscle. HIIT altered the abundance of 53 proteins and increased the turnover rate of 22 proteins (p < 0.05) in OIR muscle and tended to restore proteostasis, evidenced by increasing muscle protein turnover rates and normalizing proteasome composition in OIR participants. In conclusion, obesity and insulin resistance are associated with compromised muscle proteostasis, which can be partially restored by endurance exercise.
Proteomic studies in facioscapulohumeral muscular dystrophy (FSHD) could offer new insight to disease mechanisms underpinned by post-transcriptional processes. We used stable isotope (deuterium oxide; D2O) labelling and peptide mass spectrometry to investigate the abundance and turnover rates of proteins in cultured muscle cells from 2 individuals affected by FSHD and their unaffected siblings (UASb). We measured the abundance of 4485 proteins and the turnover rate of 2324 proteins in each (n = 4) myoblast sample. FSHD myoblasts exhibited a greater abundance but slower turnover rate of subunits of mitochondrial respiratory complexes and mitochondrial ribosomal proteins, which may indicate an accumulation of older less viable mitochondrial proteins in myoblasts from individuals affected by FSHD. Our results highlight the importance of post-transcriptional processes and protein turnover in FSHD pathology and provide a resource for the FSHD research community to explore this burgeoning aspect of FSHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.