Executive function entails high-level cognitive control supporting activities of daily living. Literature has shown that a single-bout of exercise involving volitional muscle activation (i.e., active exercise) improves executive function and that an increase in cerebral blood flow (CBF) may contribute to this benefit. It
Cognitive flexibility is a core component of executive function and supports the ability to ‘switch’ between different tasks. Our group has examined the cost associated with switching between a prosaccade (i.e., a standard task requiring a saccade to veridical target location) and an antisaccade (i.e., a non-standard task requiring a saccade mirror-symmetrical to veridical target) in predictable (i.e., AABB) and unpredictable (e.g., AABAB…) switching paradigms. Results have shown that reaction times (RTs) for a prosaccade preceded by an antisaccade (i.e., task-switch trial) are longer than when preceded by its same task-type (i.e., task-repeat trial), whereas RTs for antisaccade task-switch and task-repeat trials do not differ. The asymmetrical switch-cost has been attributed to an antisaccade task-set inertia that proactively delays a subsequent prosaccade (i.e., the unidirectional prosaccade switch-cost). A salient question arising from previous work is whether the antisaccade task-set inertia passively dissipates or persistently influences prosaccade RTs. Accordingly, participants completed separate AABB (i.e., A = prosaccade, B = antisaccade) task-switching conditions wherein the preparation interval for each trial was ‘short’ (1000–2000 ms; i.e., the timeframe used in previous work), ‘medium’ (3000–4000 ms) and ‘long’ (5000–6000 ms). Results demonstrated a reliable prosaccade switch-cost for each condition (ps < 0.02) and two one-sided test statistics indicated that switch cost magnitudes were within an equivalence boundary (ps < 0.05). Hence, null and equivalence tests demonstrate that an antisaccade task-set inertia does not passively dissipate and represents a temporally persistent feature of oculomotor control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.