Evidence is accumulating that the soil microbiome—the community of microorganisms living in soils—has a major effect on plant traits and fitness. However, most work to date has taken place under controlled laboratory conditions and has not experimentally disentangled the effect of the soil microbiome on plant performance from the effects of key endosymbiotic constituents. As a result, it is difficult to extrapolate from existing data to understand the role of the soil microbiome in natural plant populations. To address this gap, we performed a field experiment using the black medick Medicago lupulina to test how the soil microbiome influences plant performance and colonization by two root endosymbionts (the mutualistic nitrogen‐fixing bacteria Ensifer spp. and the parasitic root‐knot nematode Meloidogyne hapla) under natural conditions. We inoculated all plants with nitrogen‐fixing bacteria and factorially manipulated the soil microbiome and nematode infection. We found that plants grown in microbe‐depleted soil exhibit greater mortality, but that among the survivors, there was no effect of the soil microbiome on plant performance (shoot biomass, root biomass, or shoot‐to‐root ratio). The soil microbiome also impacted parasitic nematode infection and affected colonization by mutualistic nitrogen‐fixing bacteria in a plant genotype‐dependent manner, increasing colonization in some plant genotypes and decreasing it in others. Our results demonstrate the soil microbiome has complex effects on plant–endosymbiont interactions and may be critical for survival under natural conditions.
Species interactions are a unifying theme in ecology and evolution. Both fields are currently moving beyond their historical focus on isolated pairwise relationships to understand how ecological communities affect focal interactions. Additional species can modify both the number of interactions and the fitness consequences of each interaction (i.e., selection). Although only selection affects the evolution of the focal interaction, the two are often conflated, limiting our understanding of the evolution of multispecies interactions. We manipulated aboveground herbivory on the legume Medicago lupulina in the field and quantified its effect on number of symbionts and the per-symbiont impact on plant performance in two belowground symbioses: mutualistic rhizobia bacteria (Ensifer meliloti) and parasitic root-knot nematodes (Meloidogyne hapla). We found that herbivores modified the number of rhizobia nodules, as well as the benefit per nodule. However, each effect was specific to a distinct herbivory regime: natural herbivory affected nodule number, whereas leafhoppers (Cicadellidae) weakened the per nodule benefit. We did not detect any effect of herbivory on nematode gall number or the cost of infection. Our data demonstrate that distinguishing between symbiont number from the fitness consequences of symbiosis is crucial to accurately infer how pairwise interactions will evolve in a community.
Summary Difficulties quantifying pathogen load and mutualist abundance limit our ability to connect disease dynamics to host community ecology. For example, specific predictions about how differential pathogen load is hypothesised to drive host competitive outcomes are rarely tested. Additionally, although infection is known to affect mutualists, we rarely measure the magnitude of pathogen effects on mutualist abundance across host competitive contexts. We tested for both mechanisms in a plant–rhizobia–nematode system. We paired the legume Medicago lupulina with intraspecific and interspecific plant competitors, with and without a generalist nematode parasite Meloidogyne sp. Relative change in plant biomass was used to determine how nematode inoculation affected plant competitive outcomes. We counted nematode galls to test for direct effects of parasitism on plant competition and rhizobia nodules to test for indirect effects of nematode presence on rhizobium abundance. Parasites were destabilising despite similar nematode load across competition treatments. During interspecific compared with intraspecific competition, nematode inoculation decreased nodulation on M. lupulina, increased nodulation on Trifolium repens and had no effect on nodulation on Chamaecrista fasciculata. We found no support for hypothesised direct effects of nematode load on competitive outcomes and strong but idiosyncratic indirect effects of nematode inoculation on rhizobium abundance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.