Legumes are an excellent source of proteins and health‐promoting phytochemicals. Recognizing their importance in human nutrition and sustainable agricultural production, significant efforts are currently being made to accelerate genetic gain related to yield, stress resilience, and nutritional quality. Recent increases in genomic resources for multiple legume crops have laid a solid foundation for application of transformative breeding technologies such as genomic selection and genome editing for crop improvement. In this review, we focus on the recent plant‐specific advances in CRISPR/Cas9‐based gene editing technology and discuss the challenges and opportunities to harnessing this innovative technology for targeted improvement of traits in legume crops. Gene‐editing methods have been successfully established for soybean, cowpea, chickpea, and model legumes such as Medicago truncatula and Lotus japonicus. However, the recalcitrance of other legumes to in vitro gene transfer and regeneration has posed a serious challenge to application of gene editing. We discuss various modifications to in vitro culture methods, in terms of the choice of explant, media composition, and DNA delivery and gene‐editing detection methods that can potentially improve the rate of transformation and regeneration of whole plant in legume crops. Although gene‐editing technology can bring enormous benefits to legume breeding, regulatory hurdles are a cause for serious concern. We compare the regulatory environments existing in the European Union and the United States of America. A favorable regulatory framework and public acceptance are important factors in realizing CRISPR's potential benefits to global food security.
Numerous important pharmaceuticals and nutraceuticals originate from plant specialized metabolites, most of which are synthesized via complex biosynthetic pathways. The elucidation of these pathways is critical for the applicable uses of these compounds. Although the rapid progress of the omics technology has revolutionized the identification of candidate genes involved in these pathways, the functional characterization of these genes remains a major bottleneck. Baker’s yeast (Saccharomyces cerevisiae) has been used as a microbial platform for characterizing newly discovered metabolic genes in plant specialized metabolism. Using yeast for the investigation of numerous plant enzymes is a streamlined process because of yeast’s efficient transformation, limited endogenous specialized metabolism, partially sharing its primary metabolism with plants, and its capability of post-translational modification. Despite these advantages, reconstructing complex plant biosynthetic pathways in yeast can be time intensive. Since its discovery, CRISPR/Cas9 has greatly stimulated metabolic engineering in yeast. Yeast is a popular system for genome editing due to its efficient homology-directed repair mechanism, which allows precise integration of heterologous genes into its genome. One practical use of CRISPR/Cas9 in yeast is multiplex genome editing aimed at reconstructing complex metabolic pathways. This system has the capability of integrating multiple genes of interest in a single transformation, simplifying the reconstruction of complex pathways. As plant specialized metabolites usually have complex multigene biosynthetic pathways, the multiplex CRISPR/Cas9 system in yeast is suited well for functional genomics research in plant specialized metabolism. Here, we review the most advanced methods to achieve efficient multiplex CRISPR/Cas9 editing in yeast. We will also discuss how this powerful tool has been applied to benefit the study of plant specialized metabolism.
Sesquiterpene lactone (STL) and natural rubber (NR) are characteristic isoprenoids in lettuce (Lactuca sativa). Both STL and NR co-accumulate in laticifers, pipe-like structures located along the vasculature. NR-biosynthetic genes are exclusively expressed in laticifers, but cell-type specific expression of STL-biosynthetic genes has not been studied. Here, we examined the expression pattern of germacrene A synthase (LsGAS), which catalyzes the first step in STL biosynthesis in lettuce. Quantitative PCR and Illumina read mapping revealed that the transcripts of two GAS isoforms (LsGAS1/LsGAS2) are expressed two orders of magnitude (~100–200) higher in stems than laticifers. This result implies that the cellular site for LsGAS1/2 expression is not in laticifers. To gain more insights, promoters of LsGAS1/2 were cloned and fused to β-glucuronidase (GUS), followed by transformations of lettuce with these promoter-GUS constructs. In in situ GUS assays, the GUS expression driven by the LsGAS1/2 promoters was tightly associated with vascular bundles. High-resolution microsections showed that GUS signals are not present in laticifers but are detected in the vascular parenchyma cells neighboring the laticifers. These results suggest that expression of LsGAS1/2 occurs in the parenchyma cells neighboring laticifers, while the resulting STL metabolites accumulate in laticifers. It can be inferred that active metabolite-trafficking occurs from the parenchyma cells to laticifers in lettuce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.