The perfect quantum strategies of a linear system game correspond to certain representations of its solution group. We study the solution groups of graph incidence games, which are linear system games in which the underlying linear system is the incidence system of a (non-properly) twocoloured graph. While it is undecidable to determine whether a general linear system game has a perfect quantum strategy, for graph incidence games this problem is solved by Arkhipov's theorem, which states that the graph incidence game of a connected graph has a perfect quantum strategy if and only if it either has a perfect classical strategy, or the graph is nonplanar. Arkhipov's criterion can be rephrased as a forbidden minor condition on connected twocoloured graphs. We extend Arkhipov's theorem by showing that, for graph incidence games of connected two-coloured graphs, every quotient closed property of the solution group has a forbidden minor characterization. We rederive Arkhipov's theorem from the group theoretic point of view, and then find the forbidden minors for two new properties: finiteness and abelianness. Our methods are entirely combinatorial, and finding the forbidden minors for other quotient closed properties seems to be an interesting combinatorial problem. the most restrictive model of finite-dimensional strategies. Commuting-operator strategies refers to the most permissive model of infinite-dimensional strategies.
We give a new definition of self-testing for correlations in terms of states on C * -algebras. We show that this definition is equivalent to the standard definition for any class of finite-dimensional quantum models which is closed, provided that the correlation is extremal and has a full-rank model in the class. This last condition automatically holds for the class of POVM quantum models, but does not necessarily hold for the class of projective models by a result of Kaniewski and Mančinska. For extremal binary correlations and for extremal synchronous correlations, we show that any self-test for projective models is a self-test for POVM models. The question of whether there is a self-test for projective models which is not a self-test for POVM models remains open.An advantage of our new definition is that it extends naturally to commuting operator models. We show that an extremal correlation is a self-test for finite-dimensional quantum models if and only if it is a self-test for finite-dimensional commuting operator models, and also observe that many known finite-dimensional self-tests are in fact self-tests for infinite-dimensional commuting operator models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.