The Baltic Sea has experienced three major intervals of bottom water hypoxia following the intrusion of seawater circa 8 kyr ago. These intervals occurred during the Holocene Thermal Maximum (HTM), Medieval Climate Anomaly (MCA), and during recent decades. Here we show that sequestration of both Fe and Mn in Baltic Sea sediments generally increases with water depth, and we attribute this to shelf‐to‐basin transfer (“shuttling”) of Fe and Mn. Burial of Mn in slope and basin sediments was enhanced following the lake‐brackish/marine transition at the beginning of the hypoxic interval during the HTM. During hypoxic intervals, shelf‐to‐basin transfer of Fe was generally enhanced but that of Mn was reduced. However, intensification of hypoxia within hypoxic intervals led to decreased burial of both Mn and Fe in deep basin sediments. This implies a nonlinearity in shelf Fe release upon expanding hypoxia with initial enhanced Fe release relative to oxic conditions followed by increased retention in shelf sediments, likely in the form of iron sulfide minerals. For Mn, extended hypoxia leads to more limited sequestration as Mn carbonate in deep basin sediments, presumably because of more rapid reduction of Mn oxides formed after inflows and subsequent escape of dissolved Mn to the overlying water. Our Fe records suggest that modern Baltic Sea hypoxia is more widespread than in the past. Furthermore, hypoxia‐driven variations in shelf‐to‐basin transfer of Fe may have impacted the dynamics of P and sulfide in the Baltic Sea thus providing potential feedbacks on the further development of hypoxia.
Abstract. Expanding hypoxia in the Baltic Sea over the past century has led to the development of anoxic and sulfidic (euxinic) deep basins that are only periodically ventilated by inflows of oxygenated waters from the North Sea. In this study, we investigate the potential consequences of the expanding hypoxia for manganese (Mn) burial in the Baltic Sea using a combination of pore water and sediment analyses of dated sediment cores from eight locations. Diffusive fluxes of dissolved Mn from sediments to overlying waters at oxic, hypoxic and euxinic sites are consistent with an active release of Mn from these areas. Although the present-day fluxes are significant (ranging up to ca. 240 μmol m−2 d−1), comparison to published water column data suggests that the current benthic release of Mn is small when compared to the large pool of Mn already present in the hypoxic and anoxic water column. Our results highlight two modes of Mn carbonate formation in sediments of the deep basins. In the Gotland Deep area, Mn carbonates likely form from Mn oxides that are precipitated from the water column directly following North Sea inflows. In the Landsort Deep, in contrast, Mn carbonate and Mn sulfide layers appear to form independently of inflow events, and are possibly related to the much larger and continuous input of Mn oxides linked to sediment focusing. Whereas Mn-enriched sediments continue to accumulate in the Landsort Deep, this does not hold for the Gotland Deep area. Here, a recent increase in euxinia, as evident from measured bottom water sulfide concentrations and elevated sediment molybdenum (Mo), coincides with a decline in sediment Mn content. Sediment analyses also reveal that recent inflows of oxygenated water (since ca. 1995) are no longer consistently recorded as Mn carbonate layers. Our data suggest that eutrophication has not only led to a recent rise in sulfate reduction rates but also to a decline in reactive Fe input to these basins. We hypothesize that these factors have jointly led to higher sulfide availability near the sediment–water interface after inflow events. As a consequence, the Mn oxides may be reductively dissolved more rapidly than in the past and Mn carbonates may no longer form. Using a simple diagenetic model for Mn dynamics in the surface sediment, we demonstrate that an enhancement of the rate of reduction of Mn oxides is consistent with such a scenario. Our results have important implications for the use of Mn carbonate enrichments as a redox proxy in marine systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.