The superiority of spaced vs. massed training is a fundamental feature of learning. Here, we describe unanticipated timing rules for the production of long-term potentiation (LTP) in adult rat hippocampal slices that can account for one temporal segment of the spaced trials phenomenon. Successive bouts of naturalistic theta burst stimulation of field CA1 afferents markedly enhanced previously saturated LTP if spaced apart by 1 h or longer, but were without effect when shorter intervals were used. Analyses of Factin-enriched spines to identify potentiated synapses indicated that the added LTP obtained with delayed theta trains involved recruitment of synapses that were "missed" by the first stimulation bout. Single spine glutamate-uncaging experiments confirmed that less than half of the spines in adult hippocampus are primed to undergo plasticity under baseline conditions, suggesting that intrinsic variability among individual synapses imposes a repetitive presentation requirement for maximizing the percentage of potentiated connections. We propose that a combination of local diffusion from initially modified spines coupled with much later membrane insertion events dictate that the repetitions be widely spaced. Thus, the synaptic mechanisms described here provide a neurobiological explanation for one component of a poorly understood, ubiquitous aspect of learning.A n extensive body of experimental work indicates that periodic exposure to the same material results in better retention than a single "cramming" session. Although this distributed practice effect was first recognized in late 19th century (1-3), and has since been the subject of a very large psychological literature (4), the neurobiological processes that give rise to the phenomenon are poorly understood. Activity-dependent synaptic plasticity, and, in particular, long-term potentiation (LTP) of glutamatergic transmission, is thought to underlie rapid storage of new information (5, 6). Therefore, it is surprising that little experimental attention has been given to the possibility that specialized features of LTP may contribute to the spaced trials (distributed practice) effect. This likely reflects the lack of data indicating that the substrates of the potentiation effect include properties that are engaged, or enhanced, only by widely spaced stimulation episodes. Specifically, several types of studies point to the conclusion that the elaborate processes yielding fully developed LTP reach completion within 10-15 min (5, 7, 8); these findings do not include results suggestive of a delayed capacity for triggering additional changes to already potentiated synapses. There is considerable evidence for a later LTP stabilization step involving protein synthesis (9), but the effects of this on subsequent plasticity involve inputs other than those already expressing potentiation (10).Here, we describe a set of mechanisms and timing rules in hippocampus that result in widely spaced episodes of theta burst stimulation (TBS) generating a much greater degree of LT...
Marijuana exerts profound effects on human social behavior, but the neural substrates underlying such effects are unknown. Here we report that social contact increases, whereas isolation decreases, the mobilization of the endogenous marijuana-like neurotransmitter, anandamide, in the mouse nucleus accumbens (NAc), a brain structure that regulates motivated behavior. Pharmacological and genetic experiments show that anandamide mobilization and consequent activation of CB 1 cannabinoid receptors are necessary and sufficient to express the rewarding properties of social interactions, assessed using a socially conditioned place preference test. We further show that oxytocin, a neuropeptide that reinforces parental and social bonding, drives anandamide mobilization in the NAc. Pharmacological blockade of oxytocin receptors stops this response, whereas chemogenetic, site-selective activation of oxytocin neurons in the paraventricular nucleus of the hypothalamus stimulates it. Genetic or pharmacological interruption of anandamide degradation offsets the effects of oxytocin receptor blockade on both social place preference and cFos expression in the NAc. The results indicate that anandamidemediated signaling at CB 1 receptors, driven by oxytocin, controls social reward. Deficits in this signaling mechanism may contribute to social impairment in autism spectrum disorders and might offer an avenue to treat these conditions. endocannabinoid | oxytocin | reward | social behavior | anandamide
Men are generally superior to women in remembering spatial relationships, whereas the reverse holds for semantic information, but the neurobiological bases for these differences are not understood. Here we describe striking sexual dimorphism in synaptic mechanisms of memory encoding in hippocampal field CA1, a region critical for spatial learning. Studies of acute hippocampal slices from adult rats and mice show that for excitatory Schaffer-commissural projections, the memory-related long-term potentiation (LTP) effect depends upon endogenous estrogen and membrane estrogen receptor α (ERα) in females but not in males; there was no evident involvement of nuclear ERα in females, or of ERβ or GPER1 (G-protein-coupled estrogen receptor 1) in either sex. Quantitative immunofluorescence showed that stimulation-induced activation of two LTP-related kinases (Src, ERK1/2), and of postsynaptic TrkB, required ERα in females only, and that postsynaptic ERα levels are higher in females than in males. Several downstream signaling events involved in LTP were comparable between the sexes. In contrast to endogenous estrogen effects, infused estradiol facilitated LTP and synaptic signaling in females via both ERα and ERβ. The estrogen dependence of LTP in females was associated with a higher threshold for both inducing potentiation and acquiring spatial information. These results indicate that the observed sexual dimorphism in hippocampal LTP reflects differences in synaptic kinase activation, including both a weaker association with NMDA receptors and a greater ERα-mediated kinase activation in response to locally produced estrogen in females. We propose that male/female differences in mechanisms and threshold for field CA1 LTP contribute to differences in encoding specific types of memories. There is good evidence for male/female differences in memory-related cognitive function, but the neurobiological basis for this sexual dimorphism is not understood. Here we describe sex differences in synaptic function in a brain area that is critical for learning spatial cues. Our results show that female rodents have higher synaptic levels of estrogen receptor α (ERα) and, in contrast to males, require membrane ERα for the activation of signaling kinases that support long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. The additional requirement of estrogen signaling in females resulted in a higher threshold for both LTP and hippocampal field CA1-dependent spatial learning. These results describe a synaptic basis for sexual dimorphism in encoding spatial information.
Arc is an immediate early gene that is unique among neuronal mRNAs because its transcripts are transported into dendrites and accumulate near activated synapses, presumably to be translated locally. These qualities pose Arc as playing an important, yet not fully understood, role in the activity-dependent modifications of synapses that are thought to underlie memory storage. Here we show in vivo in rats that newly synthesized Arc mRNA accumulates at activated synapses and that synaptic activity simultaneously triggers mRNA decay that eliminates Arc mRNA from inactive dendritic domains. Arc mRNA degradation occurs throughout the dendrite and requires both NMDA receptor activation and active translation. Synaptic activation did not lead to decreases in another dendritic mRNA (␣CaMKII), indicating that there is not a general activation of mRNA degradation in dendrites. These data reveal a novel mechanism for controlling mRNA distribution within dendrites and highlight activity-dependent mRNA degradation as a regulatory process involved in synaptic plasticity.
Synaptic disturbances in excitatory to inhibitory (E/I) balance in forebrain circuits are thought to contribute to the progression of Alzheimer’s disease (AD) and dementia, although direct evidence for such imbalance in humans is lacking. We assessed anatomical and electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples from middle-aged individuals with AD (early-onset) or Down syndrome (DS) by fluorescence deconvolution tomography and microtransplantation of synaptic membranes. Both approaches revealed significantly elevated E/I ratios for AD, but not DS, versus controls. Gene expression studies in an independent AD cohort also demonstrated elevated E/I ratios in individuals with AD as compared to controls. These findings provide evidence of a marked pro-excitatory perturbation of synaptic E/I balance in AD parietal cortex, a region within the default mode network that is overly active in the disorder, and support the hypothesis that E/I imbalances disrupt cognition-related shifts in cortical activity which contribute to the intellectual decline in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.