Cattle are an important livestock species, and mapping the genomic architecture of agriculturally relevant traits such as disease susceptibility is a major challenge in the bovine research community. Lineage-specific transposable elements (TEs) are increasingly recognized to contribute to gene regulatory evolution and variation, but this possibility has been largely unexplored in ruminant genomes. We conducted epigenomic profiling of the type II interferon (IFN) response in bovine cells, and found thousands of ruminant-specific TEs including MER41_BT and Bov-A2 elements predicted to act as IFN-inducible enhancer elements. CRISPR knockout experiments in bovine cells established that critical immune factors including IFNAR2 and IL2RB are transcriptionally regulated by TE-derived enhancers. Finally, population genomic analysis of 39 individuals revealed that a subset of TE-derived enhancers represent polymorphic insertion sites in modern cattle. Our study reveals that lineage-specific TEs have shaped the evolution of ruminant IFN responses, and potentially continue to contribute to immune gene regulatory differences across modern breeds and individuals. Together with previous work in human cells, our findings demonstrate that lineage-specific TEs have been independently co-opted to regulate IFN-inducible gene expression in multiple species, supporting TE co-option as a recurrent mechanism driving the evolution of IFN-inducible transcriptional networks.
The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show stress phenotypes that diminish over time. We test the hypothesis that extended partner separation diminishes pair bond-associated behaviors and causes pair bond transcriptional signatures to erode. Pairs were cohoused for 2 weeks and then either remained paired or were separated for 48hrs or 4wks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner-directed affiliation at these time points. We found that these behaviors persist despite prolonged separation in both same-sex and opposite-sex paired voles. Opposite-sex pair bonding led to changes in accumbal transcription that were stably maintained while animals remained paired but eroded following prolonged partner separation. Eroded genes are associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in pair bonding and loss. Further, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally-enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters sensitive to acute pair bond disruption and loss adaptation. Our results suggest that partner separation erodes transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes priming a vole to be able to form a new bond.
Cattle are an important livestock species, and mapping the genomic architecture of agriculturally relevant traits such as disease susceptibility is a major challenge in the bovine research community. Lineage-specific transposable elements (TEs) are increasingly recognized to contribute to gene regulatory evolution and variation, but this possibility has been largely unexplored in ruminant genomes. We conducted epigenomic profiling of the type II interferon (IFN) response in bovine cells and found thousands of ruminant-specific TEs including MER41_BT and Bov-A2 elements predicted to act as IFN-inducible enhancer elements. CRISPR knockout experiments in bovine cells established that critical immune factors including IFNAR2 and IL2RB are transcriptionally regulated by TE-derived enhancers. Finally, population genomic analysis of 38 individuals revealed that a subset of polymorphic TE insertions may function as enhancers in modern cattle. Our study reveals that lineage-specific TEs have shaped the evolution of ruminant IFN responses and potentially continue to contribute to immune gene regulatory differences across modern breeds and individuals. Together with previous work in human cells, our findings demonstrate that lineage-specific TEs have been independently co-opted to regulate IFN-inducible gene expression in multiple species, supporting TE co-option as a recurrent mechanism driving the evolution of IFN-inducible transcriptional networks.
The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show behavioral and neuroendocrine stress phenotypes that diminish over time. Eventually, they can form a new bond, a key indicator of adapting to the loss of their partner. Thus, prairie voles provide an ethologically-relevant model for examining neuromolecular changes that emerge following partner separation for adapting to loss. Here, we test the hypothesis that extended partner separation diminishes pair bond-associated behaviors (partner preference and selective aggression) and causes pair bond transcriptional signatures to erode. Pairs were cohoused for 2 weeks and then either remained paired or were separated for 48hrs or 4wks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner preference and selective aggression at these time points. Surprisingly, pair bond-associated behaviors persist despite prolonged separation and are similar between same-sex and opposite-sex paired voles. In contrast, we found that opposite-sex pair bonding, as compared with same-sex pairing, led to changes in accumbal transcription that were stably maintained as long as animals remained paired but eroded following prolonged partner separation. Eroded genes are primarily associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in maintaining pair bonds and adapting to partner loss. We further reasoned that relevant neuronal transcriptional changes may have been masked by the prominent transcriptional signals associated with glia. Thus, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally-enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters whose expression patterns are sensitive to acute pair bond disruption and loss adaptation. Together, our results suggest that partner separation results in erosion of transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes central to priming a vole to be able to form a new bond.
Regulatory networks underlying innate immunity continually face selective pressures to adapt to new and evolving pathogens. Transposable elements (TEs) can affect immune gene expression as a source of inducible regulatory elements, but the significance of these elements in facilitating evolutionary diversification of innate immunity remains largely unexplored. Here, we investigated the mouse epigenomic response to type II interferon (IFN) signaling and discovered that elements from a subfamily of B2 SINE (B2_Mm2) contain STAT1 binding sites and function as IFN-inducible enhancers. CRISPR deletion experiments in mouse cells demonstrated that a B2_Mm2 element has been co-opted as an enhancer driving IFN-inducible expression of Dicer1. The rodent-specific B2 SINE family is highly abundant in the mouse genome and elements have been previously characterized to exhibit promoter, insulator, and non-coding RNA activity. Our work establishes a new role for B2 elements as inducible enhancer elements that influence mouse immunity, and exemplifies how lineage-specific TEs can facilitate evolutionary turnover and divergence of innate immune regulatory networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.